BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1353724)

  • 1. Immunocytochemical evidence for in vitro release of glutamate and GABA from separate nerve terminal populations in the rat pontine nuclei.
    Aas JE; Laake JH; Brodal P; Ottersen OP
    Exp Brain Res; 1992; 89(3):540-8. PubMed ID: 1353724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunogold electron microscopic demonstration of glutamate and GABA in normal and deafferented cerebellar cortex: correlation between transmitter content and synaptic vesicle size.
    Hámori J; Takács J; Petrusz P
    J Histochem Cytochem; 1990 Dec; 38(12):1767-77. PubMed ID: 1979341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic neural elements in the rat basilar pons: electron microscopic immunochemistry.
    Border BG; Mihailoff GA
    J Comp Neurol; 1990 May; 295(1):123-35. PubMed ID: 2341630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate immunoreactivity in the rat basilar pons: light and electron microscopy reveals labeled boutons and cells of origin of afferent projections.
    Border BG; Mihailoff GA
    Neuroscience; 1991; 45(1):47-61. PubMed ID: 1721694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural subtypes of glutamate-immunoreactive terminals on rat trigeminal motoneurones and their relationships with GABA-immunoreactive terminals.
    Yang HW; Appenteng K; Batten TF
    Exp Brain Res; 1997 Mar; 114(1):99-116. PubMed ID: 9125455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei.
    Bae YC; Ihn HJ; Park MJ; Ottersen OP; Moritani M; Yoshida A; Shigenaga Y
    J Comp Neurol; 2000 Mar; 418(3):299-309. PubMed ID: 10701828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA and glycine-like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat.
    Watson AH; Bazzaz AA
    J Comp Neurol; 2001 May; 433(3):335-48. PubMed ID: 11298359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig.
    Helfert RH; Juiz JM; Bledsoe SC; Bonneau JM; Wenthold RJ; Altschuler RA
    J Comp Neurol; 1992 Sep; 323(3):305-25. PubMed ID: 1360986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA?
    Murphy SM; Pilowsky PM; Llewellyn-Smith IJ
    J Comp Neurol; 1996 Sep; 373(2):200-19. PubMed ID: 8889922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid immunoreactivity in corticospinal terminals.
    Valtschanoff JG; Weinberg RJ; Rustioni A
    Exp Brain Res; 1993; 93(1):95-103. PubMed ID: 7682185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine-immunoreactive terminals in the rat trigeminal motor nucleus: light- and electron-microscopic analysis of their relationships with motoneurones and with GABA-immunoreactive terminals.
    Yang HW; Min MY; Appenteng K; Batten TF
    Brain Res; 1997 Feb; 749(2):301-19. PubMed ID: 9138731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of somatostatin with GABA or glutamate in distinct afferent terminals presynaptic to the Mauthner cell.
    Sur C; Korn H; Triller A
    J Neurosci; 1994 Feb; 14(2):576-89. PubMed ID: 7905514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA-labeled terminals form proportionally more synapses with dopaminergic neurons containing low densities of tyrosine hydroxylase-immunoreactivity in rat ventral tegmental area.
    Bayer VE; Pickel VM
    Brain Res; 1991 Sep; 559(1):44-55. PubMed ID: 1685938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The progesterone metabolite 5 alpha-pregnan-3 alpha-ol-20-one reduces K(+)-induced GABA and glutamate release from identified nerve terminals in rat hippocampus: a semiquantitative immunocytochemical study.
    Taubøll E; Ottersen OP; Gjerstad L
    Brain Res; 1993 Oct; 623(2):329-33. PubMed ID: 8106124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus.
    Meeker RB; Swanson DJ; Greenwood RS; Hayward JN
    Brain Res; 1993 Jan; 600(1):112-22. PubMed ID: 8093674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of input synapses from processes exhibiting GABA- or glutamate-like immunoreactivity onto terminals of prosternal filiform afferents in the locust.
    Watson AH; Pflüger HJ
    J Comp Neurol; 1994 May; 343(4):617-29. PubMed ID: 7913475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective excitatory amino acid uptake in glutamatergic nerve terminals and in glia in the rat striatum: quantitative electron microscopic immunocytochemistry of exogenous (D)-aspartate and endogenous glutamate and GABA.
    Gundersen V; Ottersen OP; Storm-Mathisen J
    Eur J Neurosci; 1996 Apr; 8(4):758-65. PubMed ID: 9081627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of dopamine D1 and D2 receptors in the rat neostriatum: synaptic interaction with glutamate- and GABA-containing axonal terminals.
    Yung KK; Bolam JP
    Synapse; 2000 Dec; 38(4):413-20. PubMed ID: 11044888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: an ultrastructural study.
    Sandler R; Smith AD
    J Comp Neurol; 1991 Jan; 303(2):177-92. PubMed ID: 1672874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate-like immunoreactivity in retinal terminals in the nucleus of the optic tract in rabbits.
    Cardozo BN; Buijs R; Van der Want J
    J Comp Neurol; 1991 Jul; 309(2):261-70. PubMed ID: 1715891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.