BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1354380)

  • 41. Responses of auditory nerve and anteroventral cochlear nucleus fibers to broadband and narrowband noise: implications for the sensitivity to interaural delays.
    van der Heijden M; Louage DH; Joris PX
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):485-502. PubMed ID: 21567250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers.
    Young ED; Sachs MB
    J Acoust Soc Am; 1979 Nov; 66(5):1381-1403. PubMed ID: 500976
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural response to very low-frequency sound in the avian cochlear nucleus.
    Warchol ME; Dallos P
    J Comp Physiol A; 1989 Nov; 166(1):83-95. PubMed ID: 2600887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms.
    Frisina RD; Smith RL; Chamberlain SC
    Hear Res; 1990 Mar; 44(2-3):123-41. PubMed ID: 2329089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synaptic events and discharge patterns of cochlear nucleus cells. II. Frequency-modulated tones.
    Britt R; Starr A
    J Neurophysiol; 1976 Jan; 39(1):179-94. PubMed ID: 1249601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: amplitude modulated tones.
    Zhao HB; Liang ZA
    Hear Res; 1995 Feb; 82(2):244-56. PubMed ID: 7775289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses to amplitude-modulated tones in the auditory nerve of the cat.
    Joris PX; Yin TC
    J Acoust Soc Am; 1992 Jan; 91(1):215-32. PubMed ID: 1737873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat.
    Paolini AG; FitzGerald JV; Burkitt AN; Clark GM
    Hear Res; 2001 Sep; 159(1-2):101-16. PubMed ID: 11520638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes of acoustic nerve and cochlear nucleus evoked potentials due to repetitive stimulation.
    Huang CM; Buchwald JS
    Electroencephalogr Clin Neurophysiol; 1980 Jul; 49(1-2):15-22. PubMed ID: 6159156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of high sound levels on responses to the vowel "eh" in cat auditory nerve.
    Wong JC; Miller RL; Calhoun BM; Sachs MB; Young ED
    Hear Res; 1998 Sep; 123(1-2):61-77. PubMed ID: 9745956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.
    Sayles M; Füllgrabe C; Winter IM
    J Physiol; 2013 Jul; 591(13):3401-19. PubMed ID: 23629508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neural encoding of single-formant stimuli in the ventral cochlear nucleus of the chinchilla.
    Rhode WS
    Hear Res; 1998 Mar; 117(1-2):39-56. PubMed ID: 9557977
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decorrelation sensitivity of auditory nerve and anteroventral cochlear nucleus fibers to broadband and narrowband noise.
    Louage DH; Joris PX; van der Heijden M
    J Neurosci; 2006 Jan; 26(1):96-108. PubMed ID: 16399676
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auditory nerve spatial encoding of high-frequency pure tones: population response profiles derived from d' measure associated with nearby places along the cochlea.
    Kim DO; Parham K
    Hear Res; 1991 Mar; 52(1):167-79. PubMed ID: 2061204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold.
    Horst JW; McGee J; Walsh EJ
    Hear Res; 2018 Sep; 367():195-206. PubMed ID: 30135035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains.
    Litvak L; Delgutte B; Eddington D
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2099-111. PubMed ID: 14587608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marginal shell of the anteroventral cochlear nucleus: acoustically weakly-driven and not-driven units in the unanesthetized decerebrate cat.
    Ghoshal S; Kim DO
    Acta Otolaryngol; 1996 Mar; 116(2):280-3. PubMed ID: 8725532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Signs of functional maturation of peripheral auditory system in discharge patterns of neurons in anteroventral cochlear nucleus of kitten.
    Brugge JF; Javel E; Kitzes LM
    J Neurophysiol; 1978 Nov; 41(6):1557-9. PubMed ID: 731290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of amplitude-modulated tones by frogs: implications for temporal processing mechanisms.
    Hillery CM
    Hear Res; 1984 May; 14(2):129-43. PubMed ID: 6746427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Medial efferent effects on auditory-nerve responses to tail-frequency tones II: alteration of phase.
    Stankovic KM; Guinan JJ
    J Acoust Soc Am; 2000 Aug; 108(2):664-78. PubMed ID: 10955633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.