These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1354380)

  • 81. Variability of amplitude and area of the auditory nerve compound action potential.
    Brown M; McAnally KI; Clark GM
    Acta Otolaryngol; 1997 Nov; 117(6):836-40. PubMed ID: 9442823
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Neural correlates of temporal integration in the cochlear nucleus of the chinchilla.
    Clock AE; Salvi RJ; Saunders SS; Powers NL
    Hear Res; 1993 Dec; 71(1-2):37-50. PubMed ID: 8113144
    [TBL] [Abstract][Full Text] [Related]  

  • 83. AM representation in green treefrog auditory nerve fibers: neuroethological implications for pattern recognition and sound localization.
    Klump GM; Benedix JH; Gerhardt HC; Narins PM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Dec; 190(12):1011-21. PubMed ID: 15480704
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Noninvasive chronic recording of auditory nerve potentials.
    Wiederhold ML; Martinez SA; Paull DM; Pierson MG; DeFries HO
    Ann Otol Rhinol Laryngol Suppl; 1978; 87(1 Pt 2 Suppl 45):1-11. PubMed ID: 414647
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions.
    Peterson AJ; Huet A; Bourien J; Puel JL; Heil P
    Hear Res; 2018 Dec; 370():248-263. PubMed ID: 30177426
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Spectral characteristics of the responses of primary auditory-nerve fibers to frequency-modulated signals.
    Khanna SM; Teich MC
    Hear Res; 1989 May; 39(1-2):159-75. PubMed ID: 2737963
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Postnatal development of frequency and intensity sensitivity of neurons in the anteroventral cochlear nucleus of kittens.
    Brugge JF; Kitzes LM; Javel E
    Hear Res; 1981 Nov; 5(2-3):217-29. PubMed ID: 7309639
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The genesis of the auditory action potential.
    Boer E
    Adv Otorhinolaryngol; 1977; 22():3-13. PubMed ID: 868706
    [No Abstract]   [Full Text] [Related]  

  • 89. Tonotopic organization of the anteroventral cochlear nucleus of the cat.
    Bourk TR; Mielcarz JP; Norris BE
    Hear Res; 1981 Jul; 4(3-4):215-41. PubMed ID: 7263511
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence.
    Jackson BS; Carney LH
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):148-59. PubMed ID: 15952051
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Evidence for presynaptic facilitation in primary cochlear afferent neurons.
    Siegel JH; Relkin EM
    Hear Res; 1987; 29(2-3):169-77. PubMed ID: 3624081
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus.
    Spencer MJ; Grayden DB; Bruce IC; Meffin H; Burkitt AN
    Front Comput Neurosci; 2012; 6():83. PubMed ID: 23125831
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cochlear nucleus unit responses to pure tones in the unanesthetized rabbit.
    Hui GS; Disterhoft JF
    Exp Neurol; 1980 Sep; 69(3):576-88. PubMed ID: 7409065
    [No Abstract]   [Full Text] [Related]  

  • 94. Distribution of rate-intensity function types in chick cochlear nerve after exposure to intense sound.
    Plontke SK; Lifshitz J; Saunders JC
    Brain Res; 1999 Sep; 842(1):262-74. PubMed ID: 10526123
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Preferred intervals in birds and mammals: a filter response to noise?
    Klinke R; Müller M; Richter CP; Smolders J
    Hear Res; 1994 Apr; 74(1-2):238-46. PubMed ID: 8040094
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of auditory-nerve response variability on estimates of tuning curves.
    Chintanpalli A; Heinz MG
    J Acoust Soc Am; 2007 Dec; 122(6):EL203-9. PubMed ID: 18247642
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Studies of the damped oscillatory response of the auditory frequency analyzer.
    Moller AR
    Acta Physiol Scand; 1970 Mar; 78(3):299-314. PubMed ID: 5449075
    [No Abstract]   [Full Text] [Related]  

  • 98. [Changes in the respiratory rhythm of fish obtained with acoustic stimuli].
    MANCINI E
    Boll Soc Ital Biol Sper; 1962 May; 38():443-7. PubMed ID: 14469144
    [No Abstract]   [Full Text] [Related]  

  • 99. [EXPERIMENTAL EPILEPSY IN THE CAT INDUCED BY ACOUSTIC STIMULATION PERFORMED AFTER STRYCHNINIZATION OF THE CEREBELLAR AREA OF AUDITORY PROJECTION].
    INFANTELLINA F; RIVASANSEVERINO E; URBANO A
    Boll Soc Ital Biol Sper; 1963 Dec; 39():1488-90. PubMed ID: 14122301
    [No Abstract]   [Full Text] [Related]  

  • 100. A simplified physiological model of rate-level functions of auditory-nerve fibers.
    Peterson AJ; Heil P
    Hear Res; 2021 Jul; 406():108258. PubMed ID: 34010767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.