These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 1354381)

  • 21. Trauma-specific insults to the cochlear nucleus in the rat.
    Sekiya T; Viberg A; Kojima K; Sakamoto T; Nakagawa T; Ito J; Canlon B
    J Neurosci Res; 2012 Oct; 90(10):1924-31. PubMed ID: 22715005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater.
    Brown DJ; Patuzzi RB
    Hear Res; 2010 Aug; 267(1-2):12-26. PubMed ID: 20430085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural organization and responses to complex stimuli in the dorsal cochlear nucleus.
    Young ED; Spirou GA; Rice JJ; Voigt HF
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):407-13. PubMed ID: 1354382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of intense sound exposure on phase locking in the chick (Gallus domesticus) cochlear nerve.
    Furman AC; Avissar M; Saunders JC
    Eur J Neurosci; 2006 Oct; 24(7):2003-10. PubMed ID: 17067297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus.
    Smith PH; Rhode WS
    J Comp Neurol; 1987 Dec; 266(3):360-75. PubMed ID: 3693616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binaural and cochlear disparities.
    Joris PX; Van de Sande B; Louage DH; van der Heijden M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12917-22. PubMed ID: 16908859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction.
    Oliver DL
    J Comp Neurol; 1987 Oct; 264(1):24-46. PubMed ID: 2445792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
    Tillein J; Hartmann R; Kral A
    Hear Res; 2015 Apr; 322():112-26. PubMed ID: 25285621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eesponse of cochlear nucleus neurons in the unanesthetized cat to slowly repeated tones.
    Huang CM; Buchwald JS
    Exp Neurol; 1979 Oct; 66(1):64-77. PubMed ID: 477807
    [No Abstract]   [Full Text] [Related]  

  • 30. Tonotopic organization of the anteroventral cochlear nucleus of the cat.
    Bourk TR; Mielcarz JP; Norris BE
    Hear Res; 1981 Jul; 4(3-4):215-41. PubMed ID: 7263511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anteroventral cochlear nucleus models for considering on the missing fundamental.
    Matsuoka T; Konno D
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2126-9. PubMed ID: 17282649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model of discharge patterns of units in the cochlear nucleus in response to steady state and time-varying sounds.
    Nilsson HG
    Biol Cybern; 1975 Oct; 20(2):113-9. PubMed ID: 1191725
    [No Abstract]   [Full Text] [Related]  

  • 33. Physiology of the cochlear nerve and cochlear nucleus.
    Palmer AR
    Br Med Bull; 1987 Oct; 43(4):838-55. PubMed ID: 3329928
    [No Abstract]   [Full Text] [Related]  

  • 34. Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation.
    Brughera A; Mikiel-Hunter J; Dietz M; McAlpine D
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):289-318. PubMed ID: 33861395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal population model of globular bushy cells covering unit-to-unit variability.
    Ashida G; Heinermann HT; Kretzberg J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007563. PubMed ID: 31881018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity.
    Wang GI; Delgutte B
    J Neurophysiol; 2012 Dec; 108(12):3172-95. PubMed ID: 22972956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths.
    Francis NA; Guinan JJ
    Hear Res; 2010 Aug; 267(1-2):36-45. PubMed ID: 20430088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noise reduction of coincidence detector output by the inferior colliculus of the barn owl.
    Christianson GB; Peña JL
    J Neurosci; 2006 May; 26(22):5948-54. PubMed ID: 16738236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.
    Kuhlmann L; Burkitt AN; Paolini A; Clark GM
    J Comput Neurosci; 2002; 12(1):55-73. PubMed ID: 11932560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABAergic inhibition in nucleus magnocellularis: implications for phase locking in the avian auditory brainstem.
    Monsivais P; Yang L; Rubel EW
    J Neurosci; 2000 Apr; 20(8):2954-63. PubMed ID: 10751448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.