These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 13549392)

  • 1. Coupling of oxidation of substrates to reductive biosyntheses. I. Evidence of substrate specificity in the reductive synthesis of triose phosphate.
    HOBERMAN HD
    J Biol Chem; 1958 May; 232(1):9-16. PubMed ID: 13549392
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. 1. Sedohetulose and triose phosphates as intermediates in the conversion of ribose 5-phosphate to hexose 6-phosphate in human hemolyzates.
    DISCHE Z; SHIGEURA HT; LANDSBERG E
    Arch Biochem Biophys; 1960 Jul; 89():123-33. PubMed ID: 13816919
    [No Abstract]   [Full Text] [Related]  

  • 3. Anaerobic conversion of d-xylose to triose phosphate and hexose phosphate by extracts of Pseudomonas hydrophila.
    HOCHSTER RM; STONE BA
    Can J Microbiol; 1956 Apr; 2(2):132-8. PubMed ID: 13316607
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of the triose phosphate formed in the tryptophan synthetase reaction.
    CRAWFORD IP
    Biochim Biophys Acta; 1960 Dec; 45():405-7. PubMed ID: 13696310
    [No Abstract]   [Full Text] [Related]  

  • 5. Dual mechanisms of metabolite acquisition by the obligate intracytosolic pathogen Rickettsia prowazekii reveal novel aspects of triose phosphate transport.
    Frohlich KM; Audia JP
    J Bacteriol; 2013 Aug; 195(16):3752-60. PubMed ID: 23772074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidation of triose phosphates in hemolysates of erythrocytes of normal human subjects and those with histories of favism].
    FORNAINI G; LEONCINI G; LUZZATTO L; SEGNI G
    Boll Soc Ital Biol Sper; 1961 Oct; 37():1048-50. PubMed ID: 13894094
    [No Abstract]   [Full Text] [Related]  

  • 7. Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis.
    Rogers A; Kumarathunge DP; Lombardozzi DL; Medlyn BE; Serbin SP; Walker AP
    New Phytol; 2021 Apr; 230(1):17-22. PubMed ID: 33217768
    [No Abstract]   [Full Text] [Related]  

  • 8. Triose phosphate and glutamic acid dehydrogenase inactivation at physiological conditions. A possible basis for protein turnover.
    GRISOLIA S; GRADY H; FERNANDEZ M; TUCKER D
    Med Exp Int J Exp Med; 1961; 4():329-34. PubMed ID: 13902028
    [No Abstract]   [Full Text] [Related]  

  • 9. Determination of triose phosphates and proposed modifications in the aldolase method of Sibley and Lehninger.
    BECK WS
    J Biol Chem; 1955 Feb; 212(2):847-57. PubMed ID: 14353886
    [No Abstract]   [Full Text] [Related]  

  • 10. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trioses and related substances: tools for the study of pancreatic beta-cell function.
    Best L; Thornalley PJ
    Biochem Pharmacol; 1999 Mar; 57(6):583-8. PubMed ID: 10037441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACETALDEHYDE, A PRODUCT OF DEOXYNUCLEOSIDE METABOLISM IN HUMAN ERYTHROCYTE GHOSTS.
    LIONETTI FJ; FORTIER NL; JEDZINIAK JA
    Proc Soc Exp Biol Med; 1964; 116():1080-2. PubMed ID: 14230350
    [No Abstract]   [Full Text] [Related]  

  • 13. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates.
    Serianni AS; Pierce J; Barker R
    Biochemistry; 1979 Apr; 18(7):1192-9. PubMed ID: 218615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The triose phosphate utilization limitation of photosynthetic rate: Out of global models but important for leaf models.
    Gregory LM; McClain AM; Kramer DM; Pardo JD; Smith KE; Tessmer OL; Walker BJ; Ziccardi LG; Sharkey TD
    Plant Cell Environ; 2021 Oct; 44(10):3223-3226. PubMed ID: 34278582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiorespirometric studies in genus Neisserai. I. The catabolism of glucose.
    Holten E
    Acta Pathol Microbiol Scand B; 1975 Aug; 83(4):353-66. PubMed ID: 1155121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of carbohydrate metabolism in human epidermal tumors. 2. Enzymes of the glucose oxidation pathway, from triose-phosphate to pyruvate.
    DE Bersaques J
    J Cutan Pathol; 1974; 1(4):176-9. PubMed ID: 4377843
    [No Abstract]   [Full Text] [Related]  

  • 17. Coupling of oxidation of substrates to reductive biosyntheses. III. Studies with L- and D-lactates.
    HOBERMAN HD; D'ADAMO AF
    J Biol Chem; 1960 Feb; 235():514-8. PubMed ID: 14402150
    [No Abstract]   [Full Text] [Related]  

  • 18. Coupling of oxidation of substrates to reductive biosyntheses. IV. Studies with 2, 2'-D-fumarate and 2,2'-C14-fumarate.
    HOBERMAN HD; D'ADAMO AF
    J Biol Chem; 1960 Feb; 235():519-22. PubMed ID: 14402151
    [No Abstract]   [Full Text] [Related]  

  • 19. Alternate triose phosphate pathways for glyceride biosynthesis in rat liver.
    Rao GA; Sorrels MF; Reiser R
    Biochem Biophys Res Commun; 1968 Apr; 31(2):252-6. PubMed ID: 5656074
    [No Abstract]   [Full Text] [Related]  

  • 20. Coupling of oxidation of substrates to reductive biosyntheses. V. Studies with 2-deutero-L-lactate and 2-tritio-L-lactate.
    HOBERMAN HD; D'ADAMO AF
    J Biol Chem; 1960 Feb; 235():523-4. PubMed ID: 14402152
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.