These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 13549439)

  • 1. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. IV. A comparative study of D-galacturonic acid and L-ascorbic acid formation.
    LOEWUS FA; JANG R; SEEGMILLER CG
    J Biol Chem; 1958 May; 232(1):533-41. PubMed ID: 13549439
    [No Abstract]   [Full Text] [Related]  

  • 2. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. II. Labeling patterns in the free sugars.
    LOEWUS FA; JANG R
    J Biol Chem; 1958 May; 232(1):505-19. PubMed ID: 13549437
    [No Abstract]   [Full Text] [Related]  

  • 3. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. III. Labeling patterns from berries administered pentose-1-C14.
    LOEWUS FA; JANG R
    J Biol Chem; 1958 May; 232(1):521-32. PubMed ID: 13549438
    [No Abstract]   [Full Text] [Related]  

  • 4. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries.
    JANG R; LOEWUS FA; SEEGMILLER CG
    J Biol Chem; 1956 Oct; 222(2):649-64. PubMed ID: 13367033
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of ascorbic acid and related uronic acids, aldonic acids, and pentoses.
    ASHWELL G; KANFER J; SMILEY JD; BURNS JJ
    Ann N Y Acad Sci; 1961 Apr; 92():105-14. PubMed ID: 13684759
    [No Abstract]   [Full Text] [Related]  

  • 6. The metabolism of p-galacturonic acid and its methyl ester in the detached ripening strawberry.
    LOEWUS FA; KELLY S
    Arch Biochem Biophys; 1961 Dec; 95():483-93. PubMed ID: 14466265
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of D-glucuronic acid and D-galacturonic acid by Phaseolus aureus seedlings.
    KESSLER G; NEUFELD EF; FEINGOLD DS; HASSID WZ
    J Biol Chem; 1961 Feb; 236():308-12. PubMed ID: 13752745
    [No Abstract]   [Full Text] [Related]  

  • 8. Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts.
    ISHERWOOD FA; MAPSON LW
    Biochem J; 1956 Sep; 64(1):13-22. PubMed ID: 13363799
    [No Abstract]   [Full Text] [Related]  

  • 9. The biosynthetic pathway of L-ascorbic acid in Euglena gracilis Z.
    Shigeoka S; Nakano Y; Kitaoka S
    J Nutr Sci Vitaminol (Tokyo); 1979; 25(4):299-307. PubMed ID: 118242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological synthesis of L-ascorbic acid in animal tissues: conversion of D-glucuronolactone and L-gulonolactone into L-ascorbic acid.
    CHATTERJEE IB; CHATTERJEE GC; GHOSH NC; GHOSH JJ; GUHA BC
    Biochem J; 1960 Aug; 76(2):279-92. PubMed ID: 13692610
    [No Abstract]   [Full Text] [Related]  

  • 11. Catabolism of galacturonic and glucuronic acids by Erwinia carotovora.
    KILGORE WW; STARR MP
    J Biol Chem; 1959 Sep; 234():2227-35. PubMed ID: 14409051
    [No Abstract]   [Full Text] [Related]  

  • 12. Digestibility of pentose sugars and uronic acids and their effect on chick weight gain and caecal size.
    Longstaff MA; Knox A; McNab JM
    Br Poult Sci; 1988 Jun; 29(2):379-93. PubMed ID: 3409082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymic synthesis of uridine diphosphate glucuronic acid and uridine diphosphate galacturonic acid with extracts from Phaseolus aureus seedlings.
    FEINGOLD DS; NEUFELD EF; HASSID WZ
    Arch Biochem Biophys; 1958 Dec; 78(2):401-6. PubMed ID: 13618023
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic synthesis of L-ascorbic acid via D-uronic acids; membrane-reactor integrated recovery of D-galacturonic acid from pectin hydrolysates.
    Kulbe KD; Heinzler A; Knopki G
    Ann N Y Acad Sci; 1987; 506():543-51. PubMed ID: 3324864
    [No Abstract]   [Full Text] [Related]  

  • 15. L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone.
    Baig MM; Kelly S; Loewus F
    Plant Physiol; 1970 Aug; 46(2):277-80. PubMed ID: 5481396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway.
    Badejo AA; Wada K; Gao Y; Maruta T; Sawa Y; Shigeoka S; Ishikawa T
    J Exp Bot; 2012 Jan; 63(1):229-39. PubMed ID: 21984649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alduronic acid metabolism by bacteria.
    McRORIE RA; WILLIAMS AK; PAYNE WJ
    J Bacteriol; 1959 Feb; 77(2):212-6. PubMed ID: 13630873
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry.
    FINKLE BJ; KELLY S; LOEWUS FA
    Biochim Biophys Acta; 1960 Feb; 38():332-9. PubMed ID: 13849796
    [No Abstract]   [Full Text] [Related]  

  • 19. The enzymic conversion of D-glucuronate to L-ascorbate and L-xylulose in animal tissues.
    BUBLITZ C; GROLLMAN AP; LEHNINGER AL
    Biochim Biophys Acta; 1958 Jan; 27(1):221-2. PubMed ID: 13510283
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolism of D-galactose to D-glucuronic acid, L-gulonic acid and L-ascorbic acid in normal and barbital-treated rats.
    EVANS C; CONNEY AH; TROUSOF N; BURNS JJ
    Biochim Biophys Acta; 1960 Jun; 41():9-14. PubMed ID: 13820966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.