These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 13549499)

  • 1. Studies on shell formation. VIII. Electron microscopy of crystal growth of the nacreous layer of the oyster Crassostrea virginica.
    WATABE N; SHARP DG; WILBUR KM
    J Biophys Biochem Cytol; 1958 May; 4(3):281-6. PubMed ID: 13549499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on shell formation. VII. The submicroscopic structure of the shell of the oyster Crassostrea virginica.
    TSUJII T; SHARP DG; WILBUR KM
    J Biophys Biochem Cytol; 1958 May; 4(3):275-80. PubMed ID: 13549498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on shell formation. IX. An electron microscope study of crystal layer formation in the oyster.
    WATABE N; WILBUR KM
    J Biophys Biochem Cytol; 1961 Apr; 9(4):761-71. PubMed ID: 13783329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.
    Nudelman F
    Semin Cell Dev Biol; 2015 Oct; 46():2-10. PubMed ID: 26205040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the conchiolin cases of the prisms in Mytilus edulis Linne.
    GREGOIRE C
    J Biophys Biochem Cytol; 1961 Feb; 9(2):395-400. PubMed ID: 13708397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.
    Saruwatari K; Matsui T; Mukai H; Nagasawa H; Kogure T
    Biomaterials; 2009 Jun; 30(16):3028-34. PubMed ID: 19328543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition.
    Checa AG; Okamoto T; Ramírez J
    Proc Biol Sci; 2006 Jun; 273(1592):1329-37. PubMed ID: 16777720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the chalky layer-derived EGF-like domain-containing protein (CgELC) in the pacific oyster, Crassostrea gigas.
    Iwamoto S; Shimizu K; Negishi L; Suzuki N; Nagata K; Suzuki M
    J Struct Biol; 2020 Oct; 212(1):107594. PubMed ID: 32736075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiida: Mollusca).
    Checa AG; Ramírez-Rico J; González-Segura A; Sánchez-Navas A
    Naturwissenschaften; 2009 Jan; 96(1):111-22. PubMed ID: 18843476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scanning electron microscopic study of the inorganic and organic matrices comprising the mature shell of Amblema, a fresh-water mollusc.
    Petit H; Davis WL; Jones RG
    Tissue Cell; 1980; 12(3):581-93. PubMed ID: 7434339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca).
    Checa AG; Rodríguez-Navarro A
    Proc Biol Sci; 2001 Apr; 268(1468):771-8. PubMed ID: 11321067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtexture of larval shell of oyster, Crassostrea nippona: a FIB-TEM study.
    Kudo M; Kameda J; Saruwatari K; Ozaki N; Okano K; Nagasawa H; Kogure T
    J Struct Biol; 2010 Jan; 169(1):1-5. PubMed ID: 19616099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nacre protein perlucin nucleates growth of calcium carbonate crystals.
    Blank S; Arnoldi M; Khoshnavaz S; Treccani L; Kuntz M; Mann K; Grathwohl G; Fritz M
    J Microsc; 2003 Dec; 212(Pt 3):280-91. PubMed ID: 14629554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characterization of a bioceramic material: The shell of the Eastern oyster Crassostrea virginica.
    Yoon Y; Mount AS; Hansen KM; Hansen DC
    Bioelectrochemistry; 2011 Jun; 81(2):91-8. PubMed ID: 21550319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.
    Griesshaber E; Schmahl WW; Ubhi HS; Huber J; Nindiyasari F; Maier B; Ziegler A
    Acta Biomater; 2013 Dec; 9(12):9492-502. PubMed ID: 23896564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE STRUCTURE AND ORGANIZATION OF, AND THE RELATIONSHIP BETWEEN THE ORGANIC MATRIX AND THE INORGANIC CRYSTALS OF EMBRYONIC BOVINE ENAMEL.
    TRAVIS DF; GLIMCHER MJ
    J Cell Biol; 1964 Dec; 23(3):447-97. PubMed ID: 14245432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheet nacre growth mechanism: a Voronoi model.
    Rousseau M; Lopez E; Couté A; Mascarel G; Smith DC; Naslain R; Bourrat X
    J Struct Biol; 2005 Feb; 149(2):149-57. PubMed ID: 15681231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals.
    Treccani L; Mann K; Heinemann F; Fritz M
    Biophys J; 2006 Oct; 91(7):2601-8. PubMed ID: 16861275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological control of crystallographic architecture: hierarchy and co-alignment parameters.
    Maier BJ; Griesshaber E; Alexa P; Ziegler A; Ubhi HS; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3866-74. PubMed ID: 24590164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teosin, a novel basic shell matrix protein from Hyriopsis cumingii induces calcium carbonate polycrystal formation.
    Jin C; Li JL; Liu XJ
    Int J Biol Macromol; 2020 May; 150():1229-1237. PubMed ID: 31743712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.