These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1354967)

  • 1. Alterations to the cytoskeleton of erythrocytes infected with frog erythrocytic virus: a fluorescence and electron microscopic study.
    Gruia-Gray J; Desser SS
    Biochem Cell Biol; 1992 Feb; 70(2):123-8. PubMed ID: 1354967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of frog virus-3 with the cytoskeleton. I. Altered organization of microtubules, intermediate filaments, and microfilaments.
    Murti KG; Goorha R
    J Cell Biol; 1983 May; 96(5):1248-57. PubMed ID: 6341377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of taxol on the organization of the cytoskeleton in cultured ovarian granulosa cells.
    Herman B; Langevin MA; Albertini DF
    Eur J Cell Biol; 1983 Jul; 31(1):34-45. PubMed ID: 6137363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytopathological observations and epizootiology of frog erythrocytic virus in bullfrogs (Rana catesbeiana).
    Gruia-Gray J; Desser SS
    J Wildl Dis; 1992 Jan; 28(1):34-41. PubMed ID: 1548800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytoskeletons of isolated, neuronal growth cones.
    Gordon-Weeks PR
    Neuroscience; 1987 Jun; 21(3):977-89. PubMed ID: 2888041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organization and solubility properties of intermediate filaments and microtubules of cortical astrocytes in culture.
    Goetschy JF; Ulrich G; Aunis D; Ciesielski-Treska J
    J Neurocytol; 1986 Jun; 15(3):375-87. PubMed ID: 2875133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional role for intermediate filaments in the formation of frog virus 3 assembly sites.
    Murti KG; Goorha R; Klymkowsky MW
    Virology; 1988 Jan; 162(1):264-9. PubMed ID: 2892313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a differentiated microtubule structure: formation of the chicken erythrocyte marginal band in vivo.
    Kim S; Magendantz M; Katz W; Solomon F
    J Cell Biol; 1987 Jan; 104(1):51-9. PubMed ID: 3793761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cytoskeletal organization in canine distemper virus-infected and uninfected cells.
    Howard JM; Eckert BS; Bourguignon LY
    J Gen Virol; 1983 Nov; 64 (Pt 11)():2379-85. PubMed ID: 6358405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of cytoskeleton elements during herpes simplex virus type 1 infection of human fibroblasts: an immunofluorescence study.
    Norrild B; Lehto VP; Virtanen I
    J Gen Virol; 1986 Jan; 67 ( Pt 1)():97-105. PubMed ID: 2868069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts.
    Forry-Schaudies S; Murray JM; Toyama Y; Holtzer H
    Cell Motil Cytoskeleton; 1986; 6(3):324-38. PubMed ID: 2874896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of African swine fever virus with the cytoskeleton.
    Carvalho ZG; De Matos AP; Rodrigues-Pousada C
    Virus Res; 1988 Sep; 11(2):175-92. PubMed ID: 3201825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts.
    Koury ST; Koury MJ; Bondurant MC
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3005-13. PubMed ID: 2574178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoskeleton of isolated murine primitive erythrocytes.
    Koury ST; Repasky EA; Eckert BS
    Cell Tissue Res; 1987 Jul; 249(1):69-77. PubMed ID: 3304645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reorganization of microtubules and microfilaments in differentiating keratinocytes.
    Lewis L; Barrandon Y; Green H; Albrecht-Buehler G
    Differentiation; 1987; 36(3):228-33. PubMed ID: 2452759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity.
    Salas PJ; Misek DE; Vega-Salas DE; Gundersen D; Cereijido M; Rodriguez-Boulan E
    J Cell Biol; 1986 May; 102(5):1853-67. PubMed ID: 2871031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubules and actin microfilaments in the amphibian bladder granular cells.
    Hugon JS; Ibarra C; Valenti G; Bourguet J
    Biol Cell; 1989; 66(1-2):77-84. PubMed ID: 2804461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migration of Nucleocapsids in Vesicular Stomatitis Virus-Infected Cells Is Dependent on both Microtubules and Actin Filaments.
    Yacovone SK; Smelser AM; Macosko JC; Holzwarth G; Ornelles DA; Lyles DS
    J Virol; 2016 Jul; 90(13):6159-70. PubMed ID: 27122580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic localization of the DNA virus frog erythrocytic virus.
    Gruia-Gray J; Ringuette M; Desser SS
    Intervirology; 1992; 33(3):159-64. PubMed ID: 1500276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarity of marginal-band microtubules in vertebrate erythrocytes.
    Euteneuer U; Ris H; Borisy GG
    Eur J Cell Biol; 1985 May; 37():149-55. PubMed ID: 3875485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.