These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1354984)

  • 1. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.
    Rao MJ; Acharya AS
    Biochemistry; 1992 Aug; 31(32):7231-6. PubMed ID: 1354984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic carboxyl groups of hemoglobin S: influence of oxy-deoxy conformation on the chemical reactivity of Glu-43(beta).
    Rao MJ; Acharya AS
    J Protein Chem; 1991 Feb; 10(1):129-38. PubMed ID: 1675854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective amidation of carboxyl groups of the intermolecular contact regions of hemoglobin S: structural aspects.
    Acharya AS; Khandke L
    J Protein Chem; 1989 Apr; 8(2):231-7. PubMed ID: 2736042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of Glu-22(beta) of hemoglobin S for amidation with glucosamine.
    Acharya AS; Seetharam R
    Biochemistry; 1985 Aug; 24(18):4885-90. PubMed ID: 2866791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of role of beta 146-histidyl and other histidyl residues in the Bohr effect of human normal adult hemoglobin.
    Russu IM; Ho C
    Biochemistry; 1986 Apr; 25(7):1706-16. PubMed ID: 3707904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of hemoglobin S. Quinary interactions of Glu-43(beta).
    Rao MJ; Iyer KS; Acharya AS
    J Biol Chem; 1995 Aug; 270(33):19250-5. PubMed ID: 7642597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific modification of the carboxyl groups of hemoglobin S.
    Seetharam R; Manning JM; Acharya AS
    J Biol Chem; 1983 Dec; 258(24):14810-5. PubMed ID: 6654893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of His HC3 (146) beta in the Bohr effect of human hemoglobin. Studies of native and N-ethylmaleimide-treated hemoglobin A and hemoglobin Cowtown (beta 146 His replaced by Leu).
    Shih T; Jones RT; Bonaventura J; Bonaventura C; Schneider RG
    J Biol Chem; 1984 Jan; 259(2):967-74. PubMed ID: 6693406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the beta 146 histidyl residue in the alkaline Bohr effect of hemoglobin.
    Russu IM; Ho NT; Ho C
    Biochemistry; 1980 Mar; 19(5):1043-52. PubMed ID: 7356961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of alpha and beta carboxyl-terminal residues in the kinetics of human oxyhemoglobin dimer assembly.
    Joshi AA; McDonald MJ
    J Biol Chem; 1994 Mar; 269(11):8549-53. PubMed ID: 7907594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study.
    Busch MR; Mace JE; Ho NT; Ho C
    Biochemistry; 1991 Feb; 30(7):1865-77. PubMed ID: 1993201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation for the role of beta 146 His and beta 143 His residues in the Bohr effect of human hemoglobin in the presence of 0.1 M chloride ion.
    Matsukawa S; Itatani Y; Mawatari K; Shimokawa Y; Yoneyama Y
    J Biol Chem; 1984 Sep; 259(18):11479-86. PubMed ID: 6470009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of amino acid at the beta 6 position on surface hydrophobicity, stability, solubility, and the kinetics of polymerization of hemoglobin. Comparisons among Hb A (Glu beta 6), Hb C (Lys beta 6), Hb Machida (Gln beta 6), and Hb S (Val beta 6).
    Adachi K; Kim J; Travitz R; Harano T; Asakura T
    J Biol Chem; 1987 Sep; 262(27):12920-5. PubMed ID: 2888754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional studies and polymerization of recombinant hemoglobin Glu-alpha2beta26(A3) --> Val/Glu-7(A4) --> Ala.
    Lesecq S; Baudin V; Kister J; Marden MC; Poyart C; Pagnier J
    J Biol Chem; 1996 Jul; 271(29):17211-4. PubMed ID: 8663330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic modification at the amino termini of hemoglobin A.
    Acharya AS; Bobelis DJ; White SP
    J Biol Chem; 1994 Jan; 269(4):2796-804. PubMed ID: 8300612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin Bohr effects: atomic origin of the histidine residue contributions.
    Zheng G; Schaefer M; Karplus M
    Biochemistry; 2013 Nov; 52(47):8539-55. PubMed ID: 24224786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical properties of the N-termini of human haemoglobin.
    Kaplan H; Hamel PA; Chan AM; Oda G
    Biochem J; 1982 May; 203(2):435-43. PubMed ID: 7115297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of polymerization and conformation of hemoglobin S induced by thiol reagents.
    Garel MC; Caburi-Martin J; Domenget C; Kister J; Craescu CT; Poyart C; Beuzard Y
    Biochim Biophys Acta; 1990 Nov; 1041(2):133-40. PubMed ID: 2265199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random chemical modification of the oxygen-linked chloride-binding sites of hemoglobin: those in the central dyad axis may influence the transition between deoxy- and oxy-hemoglobin.
    Ueno H; Popowicz AM; Manning JM
    J Protein Chem; 1993 Oct; 12(5):561-70. PubMed ID: 8141998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.