These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 1355004)
1. Inhibition of energy metabolism by 3-nitropropionic acid activates ATP-sensitive potassium channels. Riepe M; Hori N; Ludolph AC; Carpenter DO; Spencer PS; Allen CN Brain Res; 1992 Jul; 586(1):61-6. PubMed ID: 1355004 [TBL] [Abstract][Full Text] [Related]
2. Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. Fujimura N; Tanaka E; Yamamoto S; Shigemori M; Higashi H J Neurophysiol; 1997 Jan; 77(1):378-85. PubMed ID: 9120578 [TBL] [Abstract][Full Text] [Related]
3. Chemical preconditioning prevents paradoxical increase in glutamate release during ischemia by activating ATP-dependent potassium channels in gerbil hippocampus. Nakagawa I; Ogawa Y; Noriyama Y; Nakase H; Yamashita M; Sakaki T Exp Neurol; 2003 Sep; 183(1):180-7. PubMed ID: 12957501 [TBL] [Abstract][Full Text] [Related]
4. Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Ben-Ari Y; Krnjević K; Crépel V Neuroscience; 1990; 37(1):55-60. PubMed ID: 1978742 [TBL] [Abstract][Full Text] [Related]
5. Persistent pulsatile release of glutamate induced by N-methyl-D-aspartate in neonatal rat hippocampal neurones. Cherubini E; Ben-Ari Y; Ito S; Krnjević K J Physiol; 1991 May; 436():531-47. PubMed ID: 1676421 [TBL] [Abstract][Full Text] [Related]
6. ATP-dependent potassium channel mediates neuroprotection by chemical preconditioning with 3-nitropropionic acid in gerbil hippocampus. Nakagawa I; Nakase H; Aketa S; Kamada Y; Yamashita M; Sakaki T Neurosci Lett; 2002 Mar; 320(1-2):33-6. PubMed ID: 11849757 [TBL] [Abstract][Full Text] [Related]
7. Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Horiguchi T; Kis B; Rajapakse N; Shimizu K; Busija DW Stroke; 2003 Apr; 34(4):1015-20. PubMed ID: 12649508 [TBL] [Abstract][Full Text] [Related]
8. The K+ channel opener diazoxide enhances glutamatergic currents and reduces GABAergic currents in hippocampal neurons. Crépel V; Rovira C; Ben-Ari Y J Neurophysiol; 1993 Feb; 69(2):494-503. PubMed ID: 7681475 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial oxidation in rat hippocampus can be preconditioned by selective chemical inhibition of succinic dehydrogenase. Riepe MW; Niemi WN; Megow D; Ludolph AC; Carpenter DO Exp Neurol; 1996 Mar; 138(1):15-21. PubMed ID: 8593890 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. Tanaka E; Yamamoto S; Kudo Y; Mihara S; Higashi H J Neurophysiol; 1997 Aug; 78(2):891-902. PubMed ID: 9307122 [TBL] [Abstract][Full Text] [Related]
11. Cesium induces spontaneous epileptiform activity without changing extracellular potassium regulation in rat hippocampus. Xiong ZQ; Stringer JL J Neurophysiol; 1999 Dec; 82(6):3339-46. PubMed ID: 10601465 [TBL] [Abstract][Full Text] [Related]
12. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons. Belousov AB; van den Pol AN J Neurophysiol; 1997 Aug; 78(2):674-88. PubMed ID: 9307104 [TBL] [Abstract][Full Text] [Related]
13. Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum. Yasumoto S; Tanaka E; Hattori G; Maeda H; Higashi H J Neurophysiol; 2002 Mar; 87(3):1234-43. PubMed ID: 11877497 [TBL] [Abstract][Full Text] [Related]
14. Mediation by intracellular calcium-dependent signals of hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. Yamamoto S; Tanaka E; Higashi H J Neurophysiol; 1997 Jan; 77(1):386-92. PubMed ID: 9120579 [TBL] [Abstract][Full Text] [Related]
15. Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia. Erdemli G; Xu YZ; Krnjević K J Neurophysiol; 1998 Nov; 80(5):2378-90. PubMed ID: 9819250 [TBL] [Abstract][Full Text] [Related]
16. Cell-type specific depression of neuronal excitability in rat hippocampus by activation of ATP-sensitive potassium channels. Griesemer D; Zawar C; Neumcke B Eur Biophys J; 2002 Oct; 31(6):467-77. PubMed ID: 12355256 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. McLean HA; Caillard O; Khazipov R; Ben-Ari Y; Gaiarsa JL J Neurophysiol; 1996 Aug; 76(2):1036-46. PubMed ID: 8871218 [TBL] [Abstract][Full Text] [Related]
19. Effect of metabolic inhibition on K+ channels in pyramidal cells of the hippocampal CA1 region in rat brain slices. Hyllienmark L; Brismar T J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):155-64. PubMed ID: 8910204 [TBL] [Abstract][Full Text] [Related]
20. Dopamine and somatostatin inhibition of prolactin secretion from MMQ pituitary cells: role of adenosine triphosphate-sensitive potassium channels. Meucci O; Landolfi E; Scorziello A; Grimaldi M; Ventra C; Florio T; Avallone A; Schettini G Endocrinology; 1992 Oct; 131(4):1942-7. PubMed ID: 1356754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]