These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 135530)

  • 61. Separation of the tryptic fragments of sarcoplasmic reticulum ATPase with high performance liquid chromatography. Identification of the calcium binding site.
    Lüdi H; Hasselbach W
    FEBS Lett; 1984 Feb; 167(1):33-6. PubMed ID: 6141953
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Localization of the cyclic adenosine 3' : 5' -monophosphate phosphodiesterase activator protein in rat heart.
    Wallace GA; Harary I
    Biochem Biophys Res Commun; 1975 Nov; 67(2):810-7. PubMed ID: 173330
    [No Abstract]   [Full Text] [Related]  

  • 63. Simple spectrophotometric estimation of ATPase and calcium uptake activities of sarcoplasmic reticulum preparations.
    Horgan DJ; Tume RK; Newbold RP
    Anal Biochem; 1972 Jul; 48(1):147-52. PubMed ID: 4261203
    [No Abstract]   [Full Text] [Related]  

  • 64. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes.
    Racker E; Violand B; O'Neal S; Alfonzo M; Telford J
    Arch Biochem Biophys; 1979 Dec; 198(2):470-7. PubMed ID: 229771
    [No Abstract]   [Full Text] [Related]  

  • 65. Visualization of mitochondrial coupling factor F1(ATPase) by freeze-drying.
    Sikerwar SS; Malhotra SK
    Cell Biophys; 1979 Mar; 1(1):55-63. PubMed ID: 95168
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and characterization of tryptic fragments of the sarcoplasmic reticulum adenosine triphosphatase.
    Stewart PS; MacLennan DH
    Ann N Y Acad Sci; 1975 Dec; 264():326-34. PubMed ID: 56913
    [No Abstract]   [Full Text] [Related]  

  • 67. [Intracellular localization of the caffeine-sensitive form of Ca-dependent ATPase in the sarcoplasmic reticulum].
    Ritov VB; Vekshina OM; Budina NB
    Biull Eksp Biol Med; 1984 Sep; 98(9):317-20. PubMed ID: 6237692
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Localization of the amino phospholipids in sarcoplasmic reticulum membranes revealed by trinitrobenzenesulfonate and fluorodinitrobenzene.
    Vale MG
    Biochim Biophys Acta; 1977 Nov; 471(1):39-48. PubMed ID: 921975
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase.
    Yamada S; Yamamoto T; Kanazawa T; Tonomura Y
    J Biochem; 1971 Aug; 70(2):279-91. PubMed ID: 4255300
    [No Abstract]   [Full Text] [Related]  

  • 70. Effect of lipid composition on the calcium/adenosine 5'-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum.
    Navarro J; Toivio-Kinnucan M; Racker E
    Biochemistry; 1984 Jan; 23(1):130-5. PubMed ID: 6229280
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Modification of the enzyme system for Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Changes in the chemical composition and ultrastructural organization of the membranes].
    Kagan VE; Arkhipenko IuV; Kozlov IuP
    Biokhimiia; 1983 Jan; 48(1):158-66. PubMed ID: 6219718
    [No Abstract]   [Full Text] [Related]  

  • 72. Activation of heart sarcoplasmic reticulum Ca++-stimulated adenosine triphosphatase by insulin.
    Gupta MP; Lee SL; Dhalla NS
    J Pharmacol Exp Ther; 1989 May; 249(2):623-30. PubMed ID: 2524588
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 31P NMR and freeze fracture studies of sarcoplasmic reticulum membranes from normal and malignant hyperthermic pigs: effect of halothane and dantrolene.
    Gaillard S; Rock E; Vignon X; Dufourc EJ; Renou JP
    Arch Biochem Biophys; 1992 Apr; 294(1):154-9. PubMed ID: 1550341
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Inhibitory effect platinum and palladium complexes as indicator of conformational changes in sarcoplasmic reticulum membranes].
    Tatbianenko LV; Raĭkhman LM; Toshcheva TA; Zakharova IA; Moshkovskiĭ IuA
    Biokhimiia; 1976 Aug; 41(8):1516-21. PubMed ID: 15649
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Saturation transfer electron spin resonance study on the rotational diffusion of calcium- and magnesium-dependent adenosine triphosphatase in sarcoplasmic reticulum membranes.
    Kirino Y; Ohkuma T; Shimizu H
    J Biochem; 1978 Jul; 84(1):111-5. PubMed ID: 211120
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 13 C and 1 H nuclear magnetic resonance relaxation measurements of the lipids of sarcoplasmic reticulum membranes.
    Robinson JD; Birdsall NJ; Lee AG; Metcalfe JC
    Biochemistry; 1972 Jul; 11(15):2903-9. PubMed ID: 4339471
    [No Abstract]   [Full Text] [Related]  

  • 77. The role of phospholipid in CA 2+ -stimulated ATPase activity of sarcoplasmic reticulum.
    Meissner G; Fleischer S
    Biochim Biophys Acta; 1972 Jan; 255(1):19-33. PubMed ID: 4258773
    [No Abstract]   [Full Text] [Related]  

  • 78. [Isolation of highly active preparations of sarcoplasmic reticulum and Ca2-dependent ATPase from cardiac muscle].
    Levitskiĭ DO; Aliev MK; Levchenko TS; Lipitskaia IIa; Smirnov VN
    Biokhimiia; 1976 May; 41(5):854-63. PubMed ID: 139943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Use of diazotized di-iodosulfanilic acid to localize the protein components in sarcoplasmic reticulum membranes.
    Yu BP; Masoro EJ; Morley TF
    Life Sci; 1975 Aug; 17(3):343-8. PubMed ID: 125835
    [No Abstract]   [Full Text] [Related]  

  • 80. The intermediate cisterna of the sarcoplasmic reticulum of skeletal muscle.
    Sommer JR; Wallace NR; Junker J
    J Ultrastruct Res; 1980 May; 71(2):126-42. PubMed ID: 6155473
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.