BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1355566)

  • 1. Functional analysis of the intramolecular chaperone. Mutational hot spots in the subtilisin pro-peptide and a second-site suppressor mutation within the subtilisin molecule.
    Kobayashi T; Inouye M
    J Mol Biol; 1992 Aug; 226(4):931-3. PubMed ID: 1355566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-peptide as an intramolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide [corrected].
    Ohta Y; Hojo H; Aimoto S; Kobayashi T; Zhu X; Jordan F; Inouye M
    Mol Microbiol; 1991 Jun; 5(6):1507-10. PubMed ID: 1686294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular chaperone: the role of the pro-peptide in protein folding.
    Inouye M
    Enzyme; 1991; 45(5-6):314-21. PubMed ID: 1688202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tryptophan residues in the autoprocessing of prosubtilisin E.
    Sone M; Falzon L; Inouye M
    Biochim Biophys Acta; 2005 May; 1749(1):15-22. PubMed ID: 15848132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding pathway mediated by an intramolecular chaperone: dissecting conformational changes coincident with autoprocessing and the role of Ca(2+) in subtilisin maturation.
    Yabuta Y; Subbian E; Takagi H; Shinde U; Inouye M
    J Biochem; 2002 Jan; 131(1):31-7. PubMed ID: 11754732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli.
    Ikemura H; Takagi H; Inouye M
    J Biol Chem; 1987 Jun; 262(16):7859-64. PubMed ID: 3108260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process.
    Zhu XL; Ohta Y; Jordan F; Inouye M
    Nature; 1989 Jun; 339(6224):483-4. PubMed ID: 2657436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis.
    Lerner CG; Kobayashi T; Inouye M
    J Biol Chem; 1990 Nov; 265(33):20085-6. PubMed ID: 2243080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated refolding of subtilisin BPN' by tertiary-structure-forming mutants of its propeptide.
    Kojima S; Yanai H; Miura K
    J Biochem; 2001 Oct; 130(4):471-4. PubMed ID: 11574065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The autocatalytic processing of the subtilisin Carlsberg pro-region is independent of the primary structure of the cleavage site.
    Egnell P; Flock JI
    Mol Microbiol; 1992 May; 6(9):1115-9. PubMed ID: 1588813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four residues of propeptide are essential for precursor folding of nattokinase.
    Jia Y; Cao X; Deng Y; Bao W; Tang C; Ding H; Zheng Z; Zou G
    Acta Biochim Biophys Sin (Shanghai); 2014 Nov; 46(11):957-64. PubMed ID: 25267722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding pathway mediated by an intramolecular chaperone: the structural and functional characterization of the aqualysin I propeptide.
    Marie-Claire C; Yabuta Y; Suefuji K; Matsuzawa H; Shinde U
    J Mol Biol; 2001 Jan; 305(1):151-65. PubMed ID: 11114254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pathway for conformational diversity in proteins mediated by intramolecular chaperones.
    Shinde U; Fu X; Inouye M
    J Biol Chem; 1999 May; 274(22):15615-21. PubMed ID: 10336458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism.
    Shinde U; Inouye M
    J Mol Biol; 1995 Mar; 247(3):390-5. PubMed ID: 7714895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain.
    Yuzaki K; Sanda Y; You DJ; Uehara R; Koga Y; Kanaya S
    Protein Sci; 2013 Dec; 22(12):1711-21. PubMed ID: 24115021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-subtilisin E: purification and characterization of its autoprocessing to active subtilisin E in vitro.
    Ohta Y; Inouye M
    Mol Microbiol; 1990 Feb; 4(2):295-304. PubMed ID: 2110997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon.
    Uehara R; Tanaka S; Takano K; Koga Y; Kanaya S
    Extremophiles; 2012 Nov; 16(6):841-51. PubMed ID: 22996828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Tk-subtilisin folded without propeptide: requirement of propeptide for acceleration of folding.
    Tanaka S; Takeuchi Y; Matsumura H; Koga Y; Takano K; Kanaya S
    FEBS Lett; 2008 Nov; 582(28):3875-8. PubMed ID: 18951896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.
    Jia Y; Liu H; Bao W; Weng M; Chen W; Cai Y; Zheng Z; Zou G
    FEBS Lett; 2010 Dec; 584(23):4789-96. PubMed ID: 21074529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.