These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1355671)

  • 1. Kainate/glutamate-induced changes in intracellular calcium and pH in leech glial cells.
    Deitmer JW; Munsch T
    Neuroreport; 1992 Aug; 3(8):693-6. PubMed ID: 1355671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ.
    Munsch T; Deitmer JW
    Neurosci Res; 1997 Jan; 27(1):45-56. PubMed ID: 9089698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate.
    Deitmer JW; Schneider HP
    Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate and kainate increase intracellular sodium activity in leech neuropile glial cells.
    Ballanyi K; Dörner R; Schlue WR
    Glia; 1989; 2(1):51-4. PubMed ID: 2565287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and functional properties of glutamate receptors in the leech central nervous system.
    Dierkes PW; Hochstrate P; Schlue WR
    J Neurophysiol; 1996 Jun; 75(6):2312-21. PubMed ID: 8793744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fura-2 signals evoked by kainate in leech glial cells in the presence of different divalent cations.
    Munsch T; Nett W; Deitmer JW
    Glia; 1994 Aug; 11(4):345-53. PubMed ID: 7960037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells.
    Dörner R; Zens M; Schlue WR
    Brain Res; 1994 Nov; 665(1):47-53. PubMed ID: 7882017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent changes of intracellular calcium and pH in identified leech glial cells.
    Deitmer JW; Schneider HP; Munsch T
    Glia; 1993 Apr; 7(4):299-306. PubMed ID: 8391515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ionic mechanisms associated with the excitatory response of kainate, L-glutamate, quisqualate, ibotenate, AMPA and methyltetrahydrofolate on leech Retzius cells.
    Mat Jais AM; Kerkut GA; Walker RJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(1):115-26. PubMed ID: 6141864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-induced Ca2+ transients in nerve and glial cells in the leech CNS.
    Rose CR; Lohr C; Deitmer JW
    Neuroreport; 1995 Mar; 6(4):642-4. PubMed ID: 7605917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system.
    Dörner R; Ballanyi K; Schlue WR
    Brain Res; 1990 Jul; 523(1):111-6. PubMed ID: 2169963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ influx into leech glial cells and neurones caused by pharmacologically distinct glutamate receptors.
    Hochstrate P; Schlue WR
    Glia; 1994 Dec; 12(4):268-80. PubMed ID: 7890331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
    Reichling DB; MacDermott AB
    J Physiol; 1993 Sep; 469():67-88. PubMed ID: 7505825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Ca2+ release mediated by metabotropic glutamate receptor activation in the leech giant glial cell.
    Lohr C; Deitmer JW
    J Exp Biol; 1997 Oct; 200(Pt 19):2565-73. PubMed ID: 9366087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate responses of leech Retzius neurons in situ and in vitro.
    Löhrke S; Deitmer JW
    J Neurobiol; 1996 Nov; 31(3):345-58. PubMed ID: 8910792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological characterization of a nicotinic acetylcholine receptor on leech neuropile glial cells.
    Ballanyi K; Schlue WR
    Glia; 1989; 2(5):330-45. PubMed ID: 2530172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic calcium transients in the leech giant glial cell in situ.
    Lohr C; Deitmer JW
    Glia; 1999 Apr; 26(2):109-18. PubMed ID: 10384876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Ca2(+)-mobilizing excitatory amino acid receptors in cultured chick cortical cells.
    McMillian M; Pritchard GA; Miller LG
    Eur J Pharmacol; 1990 Oct; 189(4-5):253-66. PubMed ID: 1980647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate receptor agonists increase intracellular Ca2+ independently of voltage-gated Ca2+ channels in rat cerebellar granule cells.
    Holopainen I; Enkvist MO; Akerman KE
    Neurosci Lett; 1989 Mar; 98(1):57-62. PubMed ID: 2565564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells.
    Holzwarth JA; Gibbons SJ; Brorson JR; Philipson LH; Miller RJ
    J Neurosci; 1994 Apr; 14(4):1879-91. PubMed ID: 8158245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.