These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 13558251)

  • 1. [Glial architecture of the white substance of the vertebrate spinal cord. 2. Morphogenetic findings; general deductions].
    PANNESE E
    Z Anat Entwicklungsgesch; 1958; 120(4):279-301. PubMed ID: 13558251
    [No Abstract]   [Full Text] [Related]  

  • 2. [Glial architecture of the white substance of the spinal cord in vertebrates. I. Comparative anatomical investigations].
    PANNESE E
    Z Anat Entwicklungsgesch; 1957; 120(3):173-97. PubMed ID: 13531203
    [No Abstract]   [Full Text] [Related]  

  • 3. [Functional changes of the nuclear size of neuroglia cells in the gray matter of the spinal cord in mouse].
    KULENKAMPFF H; WUSTENFELD E
    Z Anat Entwicklungsgesch; 1954; 118(2):97-101. PubMed ID: 13227040
    [No Abstract]   [Full Text] [Related]  

  • 4. On the incidence and locations of nerve cells in the spinal white matter of two species of primates, man and the cynomolgus monkey.
    DONALD D
    J Comp Neurol; 1953 Aug; 99(1):103-15. PubMed ID: 13084786
    [No Abstract]   [Full Text] [Related]  

  • 5. [Morphological studies on the glia and ependyma of the spinal cord of mice].
    KULENKAMPFF H; KRBEK F
    Z Anat Entwicklungsgesch; 1959; 121():165-78. PubMed ID: 14412649
    [No Abstract]   [Full Text] [Related]  

  • 6. Differences in shape and size of neuroglial nuclei in the spinal cord due to individual, regional and technical variations.
    CAMMERMEYER J
    Acta Anat (Basel); 1960; 40():149-77. PubMed ID: 13807187
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuroglia in amphibian (Rana tigrina) central nervous system.
    Sensharma GC; Amrendra
    J Hirnforsch; 1981; 22(3):279-83. PubMed ID: 7276540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial cell heterogeneity in the mammalian spinal cord.
    Miller RH; Zhang H; Fok-Seang J
    Perspect Dev Neurobiol; 1994; 2(3):225-31. PubMed ID: 7850355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of spinal cord glial cells in a model of hindlimb unloading in mice.
    Chelyshev YA; Muhamedshina YO; Povysheva TV; Shaymardanova GF; Rizvanov AA; Nigmetzyanova MV; Tiapkina OV; Bondarenko NI; Nikolskiy EE; Islamov RR
    Neuroscience; 2014 Nov; 280():328-39. PubMed ID: 25218808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of radial glia in cytogenesis, patterning and boundary formation in the developing spinal cord.
    McDermott KW; Barry DS; McMahon SS
    J Anat; 2005 Sep; 207(3):241-50. PubMed ID: 16185248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter.
    Han SS; Liu Y; Tyler-Polsz C; Rao MS; Fischer I
    Glia; 2004 Jan; 45(1):1-16. PubMed ID: 14648541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of spinal cord anatomy.
    Pearce JM
    Eur Neurol; 2008; 59(6):286-91. PubMed ID: 18408368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroglial population in the spinal white matter of neonatal and early postnatal rats: an autoradiographic study of numbers of neuroglia and changes in their proliferative activity.
    Gilmore SA
    Anat Rec; 1971 Oct; 171(2):283-91. PubMed ID: 5113431
    [No Abstract]   [Full Text] [Related]  

  • 14. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse prominence of ependyma and capillaries in the spinal cord of vertebrates: a comparative histochemical study.
    Sarnat HB; Campa JF; Lloyd JM
    Am J Anat; 1975 Aug; 143(4):439-50. PubMed ID: 810014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon imaging of spinal cord cellular networks.
    Johannssen HC; Helmchen F
    Exp Neurol; 2013 Apr; 242():18-26. PubMed ID: 22849822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive glial apoptosis develops early after hypoxic-dysmetabolic insult to the neonatal rat spinal cord in vitro.
    Kuzhandaivel A; Margaryan G; Nistri A; Mladinic M
    Neuroscience; 2010 Aug; 169(1):325-38. PubMed ID: 20466038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White matter atlas of the human spinal cord with estimation of partial volume effect.
    Lévy S; Benhamou M; Naaman C; Rainville P; Callot V; Cohen-Adad J
    Neuroimage; 2015 Oct; 119():262-71. PubMed ID: 26099457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes of glial elements in the white matter of the human spinal cord.
    Malinská J
    Neuropatol Pol; 1972; 10(2):337-42. PubMed ID: 5054556
    [No Abstract]   [Full Text] [Related]  

  • 20. The spinal cord of the common marmoset (Callithrix jacchus).
    Watson C; Sengul G; Tanaka I; Rusznak Z; Tokuno H
    Neurosci Res; 2015 Apr; 93():164-75. PubMed ID: 25575643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.