These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 13561185)

  • 81. [Influence of methionine S-oxide and of the corresponding sulfone on the growth of Lactobacillus arabinosus].
    POLONOVSKI M; LEVY G
    Bull Soc Chim Biol (Paris); 1954; 36(8):955-8. PubMed ID: 13219509
    [No Abstract]   [Full Text] [Related]  

  • 82. A role of aspartic acid in purine biosynthesis.
    WAHBA AJ; SHIVE W
    J Biol Chem; 1954 Nov; 211(1):155-61. PubMed ID: 13211653
    [No Abstract]   [Full Text] [Related]  

  • 83. The deamidation of nicotinamide by lactobacillus arabinosus 17-5.
    HUGHES DE; WILLIAMSON DH
    J Gen Microbiol; 1950 Sep; 4(3):xiv. PubMed ID: 14778964
    [No Abstract]   [Full Text] [Related]  

  • 84. The role of glutamic acid in arginine synthesis by Lactobacillus arabinosus.
    HOOD DW; LYMAN CM
    J Biol Chem; 1950 Jul; 185(1):39-44. PubMed ID: 15436473
    [No Abstract]   [Full Text] [Related]  

  • 85. Pentose fermentation by Lactobacillus plantarum. III. Ribulokinase.
    BURMA DP; HORECKER BL
    J Biol Chem; 1958 Apr; 231(2):1039-51. PubMed ID: 13539035
    [No Abstract]   [Full Text] [Related]  

  • 86. Cozymase synthesis by Lactobacillus arabinosus 17-5.
    HUGHES DE; WILLIAMSON DH
    Biochem J; 1949; 45(5):Suppl, xxxvi. PubMed ID: 15396640
    [No Abstract]   [Full Text] [Related]  

  • 87. Effects of rho-fluorophenylalanine on the growth of Lactobacillus arabinosus.
    ATKINSON DE; MELVIN S; FOX SW
    Arch Biochem Biophys; 1951 Apr; 31(2):205-11. PubMed ID: 14830227
    [No Abstract]   [Full Text] [Related]  

  • 88. THE INHIBITION OF THE MALIC ENZYME OF LACTOBACILLUS ARABINOSUS 17-5 BY OLEIC ACID. II. PREVENTION OF ENZYME INHIBITION.
    COLES RS; LICHSTEIN HC
    Arch Biochem Biophys; 1963 Nov; 103():191-5. PubMed ID: 14084581
    [No Abstract]   [Full Text] [Related]  

  • 89. Relationship of aspartic acid to pyrimidine biosynthesis.
    WOODS L; RAVEL JM; SHIVE W
    J Biol Chem; 1954 Aug; 209(2):559-67. PubMed ID: 13192108
    [No Abstract]   [Full Text] [Related]  

  • 90. Some interrelationships of aspartic acid, threonine, and lysine.
    RAVEL JM; WOODS L; FELSING B; SHIVE W
    J Biol Chem; 1954 Jan; 206(1):391-400. PubMed ID: 13130560
    [No Abstract]   [Full Text] [Related]  

  • 91. Abnormal cellular morphology associated with a vitamin B6 deficiency in Lactobacillus arabinosus.
    HOLDEN JT; HOLMAN J
    J Bacteriol; 1957 Apr; 73(4):592-3. PubMed ID: 13428700
    [No Abstract]   [Full Text] [Related]  

  • 92. The development of tyrosin-independent strains of Lactobacillus arabinosus.
    JAMES AP
    J Bacteriol; 1950 Dec; 60(6):719-31. PubMed ID: 14824064
    [No Abstract]   [Full Text] [Related]  

  • 93. The utilization of alloisoleucine by Lactobacillus arabinosus.
    HOOD DW; LYMAN CM
    J Biol Chem; 1950 Sep; 186(1):195-200. PubMed ID: 14778821
    [No Abstract]   [Full Text] [Related]  

  • 94. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451(T) and Lactobacillus plantarum TMW1.468.
    Vermeulen N; Ganzle MG; Vogel RF
    J Agric Food Chem; 2006 May; 54(11):3832-9. PubMed ID: 16719504
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides.
    Knockaert D; Raes K; Wille C; Struijs K; Van Camp J
    J Sci Food Agric; 2012 Aug; 92(11):2291-6. PubMed ID: 22351494
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The true nature of the stimulation of the growth of Lactobacillus arabinosus 17-5 by folic acid.
    KOFT BW; SEVAG MG; STEERS E
    J Biol Chem; 1950 Jul; 185(1):9-15. PubMed ID: 15436470
    [No Abstract]   [Full Text] [Related]  

  • 97. Structural identification of novel oligosaccharides produced by Lactobacillus bulgaricus and Lactobacillus plantarum.
    Black BA; Lee VS; Zhao YY; Hu Y; Curtis JM; Gänzle MG
    J Agric Food Chem; 2012 May; 60(19):4886-94. PubMed ID: 22497208
    [TBL] [Abstract][Full Text] [Related]  

  • 98. OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE-INDEPENDENT LACTATE DEHYDROGENASES OF LACTOBACILLUS ARABINOSUS 17.5.
    SNOSWELL AM
    Biochim Biophys Acta; 1963 Sep; 77():7-9. PubMed ID: 14078976
    [No Abstract]   [Full Text] [Related]  

  • 99. Adaptive conversion of malate to lactate and carbon dioxide by Lactobacillus arabinosus.
    KORKES S; OCHOA S
    J Biol Chem; 1948 Oct; 176(1):463. PubMed ID: 18886184
    [No Abstract]   [Full Text] [Related]  

  • 100. Enrichment of ACE inhibitory peptides in navy bean (Phaseolus vulgaris) using lactic acid bacteria.
    Rui X; Wen D; Li W; Chen X; Jiang M; Dong M
    Food Funct; 2015 Feb; 6(2):622-9. PubMed ID: 25536445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.