These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 13562060)

  • 1. Possible relations between the direct oxidation system of acetate and the tricarboxylic acid cycle in experiments with living yeast cells.
    BOLCATO V; SCEVOLA ME; TISSELLI MA
    Experientia; 1958 Jun; 14(6):212. PubMed ID: 13562060
    [No Abstract]   [Full Text] [Related]  

  • 2. [OXIDATION OF ACETATE LABELED WITH C14 AND THE TRICARBOXYLIC ACID CYCLE IN EMBRYOS OF AMPHIBIA: EXPERIMENTS IN VIVO AND WITH ISOLATED MITOCHONDRIA].
    PETRUCCI D
    Arch Sci Biol (Bologna); 1964; 48():181-95. PubMed ID: 14210400
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of the tricarboxylic acid cycle in acetate oxidation in Escherichia coli.
    DAVIS BD; GILVARG C
    J Biol Chem; 1956 Sep; 222(1):307-19. PubMed ID: 13367004
    [No Abstract]   [Full Text] [Related]  

  • 4. ENERGY REQUIREMENT FOR THE ANAEROBIC OXIDATION OF ACETATE IN BAKER'S YEAST.
    STOPPANI AO; BENNUM A; PAHNEM DE
    Biochim Biophys Acta; 1964 Oct; 92():176-8. PubMed ID: 14243773
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemistry of filamentous fungi. IV. The significance of the tricarboxylic acid cycle in the oxidation of acetate by Penicillium chrysogenum.
    GOLDSCHMIDT EP; KOFFLER H; YALL E
    J Bacteriol; 1956 Oct; 72(4):436-46. PubMed ID: 13366943
    [No Abstract]   [Full Text] [Related]  

  • 6. Induced synthesis of tricarboxylic acid cycle enzymes as correlated with the oxidation of acetate and glucose by Pasteurella pestis.
    ENGLESBERG E; LEVY JB
    J Bacteriol; 1955 Apr; 69(4):418-31. PubMed ID: 14367296
    [No Abstract]   [Full Text] [Related]  

  • 7. Acetic acid oxidation by Escherichia coli; quantitative significance of the tricarboxylic acid cycle.
    SWIM HE; KRAMPITZ LO
    J Bacteriol; 1954 Apr; 67(4):426-34. PubMed ID: 13152053
    [No Abstract]   [Full Text] [Related]  

  • 8. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle.
    SWIM HE; KRAMPITZ LO
    J Bacteriol; 1954 Apr; 67(4):419-25. PubMed ID: 13152052
    [No Abstract]   [Full Text] [Related]  

  • 9. THE ROLE OF LACTATE IN REGULATION OF THE ENZYMATIC SYSTEM SYNTHESIS PARTICIPATING IN THE ACETATE OXIDATION IN STAPHYLOCOCCUS AUREUS.
    GERSHANOVITCH VN; PALKINA NA; BURD GI
    Biochem Biophys Res Commun; 1963 Sep; 13():12-9. PubMed ID: 14069504
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells.
    HANSON RS; SRINIVASAN VR; HALVORSON HO
    J Bacteriol; 1963 Feb; 85(2):451-60. PubMed ID: 13952646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tricarboxylic acid cycle as a pathway for transfer of carbon from acetate to amino acids in the intact cow.
    BLACK AL; KLEIBER M
    Biochim Biophys Acta; 1957 Jan; 23(1):59-69. PubMed ID: 13412678
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle.
    KORNBERG HL; MADSEN NB
    Biochim Biophys Acta; 1957 Jun; 24(3):651-3. PubMed ID: 13436500
    [No Abstract]   [Full Text] [Related]  

  • 14. [THE EFFECT OF ALPHA-PHENYLLACTATE ON DEPRESSION OF THE ACETATE OXIDATION SYSTEM IN STAPHYLOCOCCUS AUREUS-209].
    GERSHANOVICH VN; BURD GI
    Biokhimiia; 1964; 29():317-20. PubMed ID: 14207646
    [No Abstract]   [Full Text] [Related]  

  • 15. [Substrate inhibition in the tricarboxylic acid cycle].
    Dynnik VV; MaevskiÄ­ EI; Grigorenko EV; Kim IuV
    Biofizika; 1984; 29(6):954-8. PubMed ID: 6518172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose alleviates ammonia-induced inhibition of short-chain fatty acid metabolism in rat colonic epithelial cells.
    Cremin JD; Fitch MD; Fleming SE
    Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G105-14. PubMed ID: 12637251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CARBOHYDRATE METABOLISM OF STAPHYLOCOCCUS AUREUS.
    STRASTERS KC; WINKLER KC
    J Gen Microbiol; 1963 Nov; 33():213-29. PubMed ID: 14121198
    [No Abstract]   [Full Text] [Related]  

  • 18. Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation.
    Szeinbaum N; Lin H; Brandes JA; Taillefert M; Glass JB; DiChristina TJ
    Environ Microbiol; 2017 Sep; 19(9):3475-3486. PubMed ID: 28631370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of tricarboxylic acid cycle intermediates by nerve cell bodies and glial cells.
    HAMBERGER A
    J Neurochem; 1961 Oct; 8():31-5. PubMed ID: 13904061
    [No Abstract]   [Full Text] [Related]  

  • 20. The oxidation of tricarboxylic acid cycle intermediates by a strain of Corynebacterium erythrogenes.
    TUCKER RG
    J Gen Microbiol; 1960 Oct; 23():267-82. PubMed ID: 13778543
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.