These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1356265)

  • 1. N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn.
    Kalb RG; Lidow MS; Halsted MJ; Hockfield S
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8502-6. PubMed ID: 1356265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human spinal cord.
    Shaw PJ; Ince PG; Johnson M; Perry EK; Candy J
    Brain Res; 1991 Jan; 539(1):164-8. PubMed ID: 1826627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized overproduction of AMPA, kainate, and NMDA glutamate receptors during human spinal cord development.
    Kalb RG; Fox AJ
    J Comp Neurol; 1997 Jul; 384(2):200-10. PubMed ID: 9215718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of NMDA receptor binding in developing mouse spinal cord.
    Gonzalez DL; Fuchs JL; Droge MH
    Neurosci Lett; 1993 Mar; 151(2):134-7. PubMed ID: 8099433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-methyl-D-aspartate (NMDA) receptors in the spinal cord and motor cortex in motor neuron disease: a quantitative autoradiographic study using [3H]MK-801.
    Shaw PJ; Ince PG; Matthews JN; Johnson M; Candy JM
    Brain Res; 1994 Feb; 637(1-2):297-302. PubMed ID: 7514083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionotropic glutamate receptor expression in human spinal cord during first trimester development.
    Akesson E; Kjaeldgaard A; Samuelsson EB; Seiger A; Sundström E
    Brain Res Dev Brain Res; 2000 Jan; 119(1):55-63. PubMed ID: 10648872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative and qualitative changes in AMPA receptor expression during spinal cord development.
    Jakowec MW; Fox AJ; Martin LJ; Kalb RG
    Neuroscience; 1995 Aug; 67(4):893-907. PubMed ID: 7675212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus.
    Gould E; Cameron HA; McEwen BS
    J Comp Neurol; 1994 Feb; 340(4):551-65. PubMed ID: 7911808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting.
    Hama AT; Unnerstall JR; Siegan JB; Sagen J
    Brain Res; 1995 Jul; 687(1-2):103-13. PubMed ID: 7583294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-aspartate receptors in motoneurones after unilateral axotomy in the neonatal rat.
    Hughes S; Lowrie MB; Smith ME
    Brain Res Dev Brain Res; 1997 Aug; 102(1):13-20. PubMed ID: 9298230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats.
    Ossowska K; Pietraszek M; Wardas J; Nowak G; Wolfarth S
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):280-7. PubMed ID: 10344526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents.
    Guntz E; Dumont H; Pastijn E; d'Exaerde Ade K; Azdad K; Sosnowski M; Schiffmann SN; Gall D
    Anesth Analg; 2008 Jun; 106(6):1882-9. PubMed ID: 18499627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of [3H]MK-801 binding in the rat spinal cord.
    Souverbie F; Mo LL; Liu Y; von Euler G; Sundstr-om E
    Eur J Pharmacol; 1996 Jul; 307(3):347-53. PubMed ID: 8836624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine ([3H]MK-801) in rat brain: regional effects of polyamines.
    Subramaniam S; McGonigle P
    J Pharmacol Exp Ther; 1991 Feb; 256(2):811-9. PubMed ID: 1671602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyotrophic lateral sclerosis: quantitative autoradiography of [3H]MK-801/NMDA binding sites in spinal cord.
    Krieger C; Wagey R; Shaw C
    Neurosci Lett; 1993 Sep; 159(1-2):191-4. PubMed ID: 8264965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA receptor binding declines differentially in three spinal motor nuclei during postnatal development.
    Verhovshek T; Wellman CL; Sengelaub DR
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):122-6. PubMed ID: 15896907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of NMDA receptor-channel complex and L-type calcium channels in mouse hippocampus.
    Głazewski S; Skangiel-Kramska J; Kossut M
    J Neurosci Res; 1993 Jun; 35(2):199-206. PubMed ID: 8100589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of NMDA receptors in the human spinal cord.
    Sundström E; Whittemore S; Mo LL; Seiger A
    Exp Neurol; 1997 Dec; 148(2):407-13. PubMed ID: 9417820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding.
    Rosier AM; Arckens L; Orban GA; Vandesande F
    J Comp Neurol; 1993 Sep; 335(3):369-80. PubMed ID: 7901247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine A1 and A2 receptors of the substantia gelatinosa are located predominantly on intrinsic neurons: an autoradiography study.
    Choca JI; Green RD; Proudfit HK
    J Pharmacol Exp Ther; 1988 Nov; 247(2):757-64. PubMed ID: 3183969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.