BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 1356333)

  • 21. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes.
    Massey V; Schopfer LM; Nishino T; Nishino T
    J Biol Chem; 1989 Jun; 264(18):10567-73. PubMed ID: 2732238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox potentials and their pH dependence of D-amino-acid oxidase of Rhodotorula gracilis and Trigonopsis variabilis.
    Pollegioni L; Porrini D; Molla G; Pilone MS
    Eur J Biochem; 2000 Nov; 267(22):6624-32. PubMed ID: 11054115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Affinity labeling of D-amino acid oxidase with an acetylenic substrate.
    Horiike K; Nishina Y; Miyake Y; Yamano T
    J Biochem; 1975 Jul; 78(1):57-63. PubMed ID: 379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissection of the structural determinants involved in formation of the dimeric form of D-amino acid oxidase from Rhodotorula gracilis: role of the size of the betaF5-betaF6 loop.
    Piubelli L; Molla G; Caldinelli L; Pilone MS; Pollegioni L
    Protein Eng; 2003 Dec; 16(12):1063-9. PubMed ID: 14983088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S; Vock P; Wang M; Kim JJ; Ghisla S
    Biochemistry; 1999 Jan; 38(1):257-67. PubMed ID: 9890906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of D-amino-acid oxidase from Rhodotorula gracilis.
    Pilone Simonetta M; Pollegioni L; Casalin P; Curti B; Ronchi S
    Eur J Biochem; 1989 Mar; 180(1):199-204. PubMed ID: 2565232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the holoenzyme reconstitution process in native and truncated Rhodotorula gracilis D-amino acid oxidase.
    Pollegioni L; Pilone MS
    Arch Biochem Biophys; 1996 Aug; 332(1):58-62. PubMed ID: 8806709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and function of D-amino acid oxidase. IX. Changes in the fluorescence polarization of FAD upon complex formation.
    Yagi K; Tanaka F; Oishi N
    J Biochem; 1975 Feb; 77(2):463-8. PubMed ID: 236295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources.
    Pollegioni L; Caldinelli L; Molla G; Sacchi S; Pilone MS
    Biotechnol Prog; 2004; 20(2):467-73. PubMed ID: 15058991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the mechanism of Rhodotorula gracilis D-amino acid oxidase: role of the active site serine 335.
    Boselli A; Piubelli L; Molla G; Sacchi S; Pilone MS; Ghisla S; Pollegioni L
    Biochim Biophys Acta; 2004 Oct; 1702(1):19-32. PubMed ID: 15450847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the ligands in charge-transfer complexes of porcine kidney flavoenzyme D-amino acid oxidase in three redox states: a resonance Raman study.
    Nishina Y; Sato K; Shi R; Setoyama C; Miura R; Shiga K
    J Biochem; 2001 Nov; 130(5):637-47. PubMed ID: 11686926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the role of active site residues of Rhodotorula gracilis D-amino acid oxidase on its substrate specificity.
    Boselli A; Piubelli L; Molla G; Pilone MS; Pollegioni L; Sacchi S
    Biochimie; 2007 Mar; 89(3):360-8. PubMed ID: 17145127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical modification of lysyl residues of Rhodotorula gracilis D-amino acid oxidase.
    Gadda G; Beretta GL; Pilone MS
    Biochem Mol Biol Int; 1994 Aug; 33(5):947-55. PubMed ID: 7987263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 6-Mercapto-FAD and 6-thiocyanato-FAD as active site probes of phenol hydroxylase.
    Taylor MG; Massey V
    J Biol Chem; 1991 May; 266(13):8281-90. PubMed ID: 2022645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stereochemistry and accessibility of prosthetic groups in flavoproteins.
    Manstein DJ; Massey V; Ghisla S; Pai EF
    Biochemistry; 1988 Apr; 27(7):2300-5. PubMed ID: 2898258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunochemical properties of D-amino-acid oxidase.
    Gavazzi E; Malgaretti N; Curti B
    Biochim Biophys Acta; 1987 Sep; 915(2):188-98. PubMed ID: 2443178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.