These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1356356)

  • 1. Depression as a consequence of inadequate neurochemical adaptation in response to stressors.
    Anisman H; Zacharko RM
    Br J Psychiatry Suppl; 1992 Feb; (15):36-43. PubMed ID: 1356356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal behavioural studies in the evaluation of antidepressant drugs.
    Thiébot MH; Martin P; Puech AJ
    Br J Psychiatry Suppl; 1992 Feb; (15):44-50. PubMed ID: 1356357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokines, stressors, and clinical depression: augmented adaptation responses underlie depression pathogenesis.
    Simmons DA; Broderick PA
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Jun; 29(5):793-807. PubMed ID: 15923072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurochemical and neuroendocrine dysregulation in affective disorders.
    Golden RN; Potter WZ
    Psychiatr Clin North Am; 1986 Jun; 9(2):313-27. PubMed ID: 2873561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models for the experimental analysis of depression.
    Richardson JS; Jesberger JA
    Acta Psychiatr Belg; 1986; 86():733-47. PubMed ID: 2882646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress, depression, and anhedonia: caveats concerning animal models.
    Anisman H; Matheson K
    Neurosci Biobehav Rev; 2005; 29(4-5):525-46. PubMed ID: 15925696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Social and structural housing conditions influence the development of a depressive-like phenotype in the learned helplessness paradigm in male mice.
    Chourbaji S; Zacher C; Sanchis-Segura C; Spanagel R; Gass P
    Behav Brain Res; 2005 Oct; 164(1):100-6. PubMed ID: 16046006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal factors and monoamine changes in stress-resilient and susceptible mice: cross-fostering effects.
    Prakash P; Merali Z; Kolajova M; Tannenbaum BM; Anisman H
    Brain Res; 2006 Sep; 1111(1):122-33. PubMed ID: 16876768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticotropin releasing hormone receptor alterations elicited by acute and chronic unpredictable stressor challenges in stressor-susceptible and resilient strains of mice.
    Anisman H; Prakash P; Merali Z; Poulter MO
    Behav Brain Res; 2007 Aug; 181(2):180-90. PubMed ID: 17517441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological correlates of emotional and cognitive behaviour: insights from studies on inbred and outbred rodent strains and their crosses.
    Yilmazer-Hanke DM
    Behav Pharmacol; 2008 Sep; 19(5-6):403-34. PubMed ID: 18690101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokines as a stressor: implications for depressive illness.
    Anisman H; Hayley S; Turrin N; Merali Z
    Int J Neuropsychopharmacol; 2002 Dec; 5(4):357-73. PubMed ID: 12466035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats.
    Rybnikova E; Mironova V; Pivina S; Tulkova E; Ordyan N; Vataeva L; Vershinina E; Abritalin E; Kolchev A; Nalivaeva N; Turner AJ; Samoilov M
    Neurosci Lett; 2007 May; 417(3):234-9. PubMed ID: 17379404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.
    Harro J; Kanarik M; Matrov D; Panksepp J
    Neurosci Biobehav Rev; 2011 Oct; 35(9):1876-89. PubMed ID: 21382409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants?
    Nielsen DM
    Life Sci; 2006 Jan; 78(9):909-19. PubMed ID: 16122764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice selected for high versus low stress reactivity: a new animal model for affective disorders.
    Touma C; Bunck M; Glasl L; Nussbaumer M; Palme R; Stein H; Wolferstätter M; Zeh R; Zimbelmann M; Holsboer F; Landgraf R
    Psychoneuroendocrinology; 2008 Jul; 33(6):839-62. PubMed ID: 18502051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors.
    Chourbaji S; Urani A; Inta I; Sanchis-Segura C; Brandwein C; Zink M; Schwaninger M; Gass P
    Neurobiol Dis; 2006 Sep; 23(3):587-94. PubMed ID: 16843000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness.
    Hayley S; Merali Z; Anisman H
    Stress; 2003 Mar; 6(1):19-32. PubMed ID: 12637204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Creation of a line of "depressed" mice from a selection of breeders exhibiting a behavioral helplessness].
    Vaugeois JM; Costentin J
    C R Seances Soc Biol Fil; 1998; 192(6):1149-61. PubMed ID: 10101610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroendocrine mechanisms and the precipitation of depression by life events.
    Checkley S
    Br J Psychiatry Suppl; 1992 Feb; (15):7-17. PubMed ID: 1356360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of the neurohypophysis in psychological stress].
    Scantamburlo G; Ansseau M; Legros JJ
    Encephale; 2001; 27(3):245-59. PubMed ID: 11488255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.