These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1356382)

  • 1. Isolation of high-molecular-weight DNA from small samples of blood having nucleated erythrocytes, collected, transported, and stored at room temperature.
    Aggarwal RK; Lang JW; Singh L
    Genet Anal Tech Appl; 1992 Apr; 9(2):54-7. PubMed ID: 1356382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing.
    Permenter J; Ishwar A; Rounsavall A; Smith M; Faske J; Sailey CJ; Alfaro MP
    Mol Cell Probes; 2015 Dec; 29(6):449-453. PubMed ID: 26166695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protection and stabilization of whole blood at room temperature.
    Udtha M; Flores R; Sanner J; Nomie K; Backes E; Wilbers L; Caldwell J
    Biopreserv Biobank; 2014 Oct; 12(5):332-6. PubMed ID: 25340942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Streck BCT and PAXgene Stabilised Blood Collection Tubes for Cell-Free Circulating DNA Studies in Plasma.
    Warton K; Yuwono NL; Cowley MJ; McCabe MJ; So A; Ford CE
    Mol Diagn Ther; 2017 Oct; 21(5):563-570. PubMed ID: 28631163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic DNA extraction from whole blood stored from 15- to 30-years at -20 °C by rapid phenol-chloroform protocol: a useful tool for genetic epidemiology studies.
    Di Pietro F; Ortenzi F; Tilio M; Concetti F; Napolioni V
    Mol Cell Probes; 2011 Feb; 25(1):44-8. PubMed ID: 21029772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-blood polymerase chain reaction and restriction fragment length polymorphism: a simplified method by microwave irradiation.
    Jadaon MM; Dashti AA; Lewis HL; Habeeb FM
    Med Princ Pract; 2009; 18(4):280-3. PubMed ID: 19494534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA extraction from liquid blood using QIAamp.
    Scherczinger CA; Bourke MT; Ladd C; Lee HC
    J Forensic Sci; 1997 Sep; 42(5):893-6. PubMed ID: 9304838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of blood storage time and temperature on DNA yield and quality.
    Cushwa WT; Medrano JF
    Biotechniques; 1993 Feb; 14(2):204-7. PubMed ID: 8431281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High salt method: a simple and rapid procedure for isolation of genomic DNA from buffalo (Bubalus bubalis) white blood cells.
    Aravindakshan TV; Nainar AM; Nachimuthu K
    Indian J Exp Biol; 1997 Aug; 35(8):903-5. PubMed ID: 9475068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lysis, storage, and transportation buffer for long-term, room-temperature preservation of human clinical lymphoid tissue samples yielding high molecular weight genomic DNA suitable for molecular diagnosis.
    Schultz CL; Akker Y; Du J; Ratech H
    Am J Clin Pathol; 1999 Jun; 111(6):748-52. PubMed ID: 10361509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logistics and quality control for DNA sampling in large multicenter studies.
    Nederhand RJ; Droog S; Kluft C; Simoons ML; de Maat MP;
    J Thromb Haemost; 2003 May; 1(5):987-91. PubMed ID: 12871366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameters affecting the yield of DNA from human blood.
    Gustafson S; Proper JA; Bowie EJ; Sommer SS
    Anal Biochem; 1987 Sep; 165(2):294-9. PubMed ID: 3425899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple DNA extraction of urine samples: Effects of storage temperature and storage time.
    Ng HH; Ang HC; Hoe SY; Lim ML; Tai HE; Soh RCH; Syn CK
    Forensic Sci Int; 2018 Jun; 287():36-39. PubMed ID: 29627711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of thyroid hormones and DNA in blood spots kept under varying storage conditions.
    El Ezzi AA; El-Saidi MA; Kuddus RH
    Pediatr Int; 2010 Aug; 52(4):631-9. PubMed ID: 20202157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mouthwash: a non-invasive sampling method to study cytokine gene polymorphisms.
    Laine ML; Farré MA; Crusius JB; van Winkelhoff AJ; Peña AS
    J Periodontol; 2000 Aug; 71(8):1315-8. PubMed ID: 10972647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The use of the teeth in genetic fingerprinting].
    Gaillard F; Ludes B; Kaess B; Mangin P
    Bull Group Int Rech Sci Stomatol Odontol; 1994; 37(3-4):65-70. PubMed ID: 8000231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fundamental and practical study for DNA analysis using tooth as a source of DNA].
    Hanaoka Y; Inoue M; Tsai TH; Minaguchi K
    Nihon Hoigaku Zasshi; 1995 Feb; 49(1):1-10. PubMed ID: 7723194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis.
    Ghatak S; Muthukumaran RB; Nachimuthu SK
    J Biomol Tech; 2013 Dec; 24(4):224-31. PubMed ID: 24294115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies.
    Lum A; Le Marchand L
    Cancer Epidemiol Biomarkers Prev; 1998 Aug; 7(8):719-24. PubMed ID: 9718225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Estimating the efficiency of DNA isolation methods in semen, blood and saliva stains using the QuantiBlot system].
    Prośniak A; Gloc E; Berent J; Babol-Pokora K; Jacewicz R; Szram S
    Arch Med Sadowej Kryminol; 2006; 56(1):19-23. PubMed ID: 16708611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.