These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1207 related articles for article (PubMed ID: 1356551)

  • 1. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.
    Nehlig A; Daval JL; Debry G
    Brain Res Brain Res Rev; 1992; 17(2):139-70. PubMed ID: 1356551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caffeine treatment and withdrawal in mice: relationships between dosage, concentrations, locomotor activity and A1 adenosine receptor binding.
    Kaplan GB; Greenblatt DJ; Kent MA; Cotreau-Bibbo MM
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1563-72. PubMed ID: 8371158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines.
    Daly JW; Bruns RF; Snyder SH
    Life Sci; 1981 May; 28(19):2083-97. PubMed ID: 6114369
    [No Abstract]   [Full Text] [Related]  

  • 4. [New aspects of the mechanism of the central nervous system stimulating effect of caffeine].
    Ammon HP
    Dtsch Med Wochenschr; 1984 Sep; 109(39):1491-4. PubMed ID: 6090091
    [No Abstract]   [Full Text] [Related]  

  • 5. Central nervous system pharmacology of the dietary methylxanthines.
    Hirsh K
    Prog Clin Biol Res; 1984; 158():235-301. PubMed ID: 6098899
    [No Abstract]   [Full Text] [Related]  

  • 6. Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors.
    Choi OH; Shamim MT; Padgett WL; Daly JW
    Life Sci; 1988; 43(5):387-98. PubMed ID: 2456442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic effects of xanthines on levels of central receptors in mice.
    Shi D; Daly JW
    Cell Mol Neurobiol; 1999 Dec; 19(6):719-32. PubMed ID: 10456233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.
    Acevedo J; Santana-Almansa A; Matos-Vergara N; Marrero-Cordero LR; Cabezas-Bou E; Díaz-Ríos M
    Neuropharmacology; 2016 Feb; 101():490-505. PubMed ID: 26493631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of adenosine receptors in caffeine tolerance.
    Holtzman SG; Mante S; Minneman KP
    J Pharmacol Exp Ther; 1991 Jan; 256(1):62-8. PubMed ID: 1846425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological rationale for the clinical use of caffeine.
    Sawynok J
    Drugs; 1995 Jan; 49(1):37-50. PubMed ID: 7705215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is adenosine involved in inhibition of forskolin-stimulated cyclic AMP accumulation by caffeine in rat brain?
    Mante S; Minneman KP
    Mol Pharmacol; 1990 Nov; 38(5):652-9. PubMed ID: 2172772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine potentiates vasodilator-induced renin release.
    Tofovic SP; Branch KR; Oliver RD; Magee WD; Jackson EK
    J Pharmacol Exp Ther; 1991 Mar; 256(3):850-60. PubMed ID: 2005584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans.
    Orrú M; Guitart X; Karcz-Kubicha M; Solinas M; Justinova Z; Barodia SK; Zanoveli J; Cortes A; Lluis C; Casado V; Moeller FG; Ferré S
    Neuropharmacology; 2013 Apr; 67():476-84. PubMed ID: 23261866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine and adenosine.
    Ribeiro JA; Sebastião AM
    J Alzheimers Dis; 2010; 20 Suppl 1():S3-15. PubMed ID: 20164566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonism of the behavioral effects of L-phenylisopropyladenosine (L-PIA) by caffeine and its metabolites.
    Logan L; Carney JM
    Pharmacol Biochem Behav; 1984 Sep; 21(3):375-9. PubMed ID: 6494209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine antagonists as potential therapeutic agents.
    Williams M; Jarvis MF
    Pharmacol Biochem Behav; 1988 Feb; 29(2):433-41. PubMed ID: 3283781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylxanthine discrimination in the rat: possible benzodiazepine and adenosine mechanisms.
    Holloway FA; Modrow HE; Michaelis RC
    Pharmacol Biochem Behav; 1985 May; 22(5):815-24. PubMed ID: 2989946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological role of adenosine in the central nervous system.
    Dunwiddie TV
    Int Rev Neurobiol; 1985; 27():63-139. PubMed ID: 2867982
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of enprofylline and theophylline may show the role of adenosine.
    Persson CG; Andersson KE; Kjellin G
    Life Sci; 1986 Mar; 38(12):1057-72. PubMed ID: 3007902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.
    Ardais AP; Borges MF; Rocha AS; Sallaberry C; Cunha RA; Porciúncula LO
    Neuroscience; 2014 Jun; 270():27-39. PubMed ID: 24726984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.