BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1356588)

  • 1. Modulation of morphine antinociception by antagonism of H2 receptors in the periaqueductal gray.
    Hough LB; Nalwalk JW
    Brain Res; 1992 Aug; 588(1):58-66. PubMed ID: 1356588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histamine-induced modulation of nociceptive responses.
    Thoburn KK; Hough LB; Nalwalk JW; Mischler SA
    Pain; 1994 Jul; 58(1):29-37. PubMed ID: 7970837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats.
    Tortorici V; Nogueira L; Salas R; Vanegas H
    Pain; 2003 Mar; 102(1-2):9-16. PubMed ID: 12620592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of morphine antinociception by centrally administered histamine H2 receptor antagonists.
    Hough LB; Nalwalk JW
    Eur J Pharmacol; 1992 Apr; 215(1):69-74. PubMed ID: 1355443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat.
    Campion KN; Saville KA; Morgan MM
    Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of histamine H2 receptors in restraint-morphine interactions.
    Nalwalk JW; Hough LB
    Life Sci; 1995; 57(13):PL153-8. PubMed ID: 7674814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific modulation of morphine and swim-induced antinociception following thyrotropin-releasing hormone in the rat periaqueductal gray.
    Robertson JA; Bodnar RJ
    Pain; 1993 Oct; 55(1):71-84. PubMed ID: 8278212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in antinociceptive signalling mechanisms following morphine and fentanyl microinjections into the rat periaqueductal gray.
    Morgan MM; Tran A; Wescom RL; Bobeck EN
    Eur J Pain; 2020 Mar; 24(3):617-624. PubMed ID: 31785128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the antinociceptive properties of cimetidine and a structural analog.
    Li BY; Nalwalk JW; Barker LA; Cumming P; Parsons ME; Hough LB
    J Pharmacol Exp Ther; 1996 Feb; 276(2):500-8. PubMed ID: 8632315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray.
    Urban MO; Smith DJ
    Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray.
    Morgan MM; Whitney PK; Gold MS
    Brain Res; 1998 Aug; 804(1):159-66. PubMed ID: 9729359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat.
    Morgan MM; Bobeck EN; Ingram SL
    Brain Res; 2009 Oct; 1295():59-66. PubMed ID: 19664608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for histamine and H2-receptors in opioid antinociception.
    Gogas KR; Hough LB; Eberle NB; Lyon RA; Glick SD; Ward SJ; Young RC; Parsons ME
    J Pharmacol Exp Ther; 1989 Aug; 250(2):476-84. PubMed ID: 2547933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-opioid antinociception produced by brain stem injections of improgan: significance of local, but not cross-regional, cannabinoid mechanisms.
    Hough LB; Svokos K; Nalwalk JW
    Brain Res; 2009 Jan; 1247():62-70. PubMed ID: 18983834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception produced by microinjection of morphine in the rat periaqueductal gray is enhanced in the foot, but not the tail, by intrathecal injection of alpha1-adrenoceptor antagonists.
    Fang F; Proudfit HK
    Brain Res; 1998 Apr; 790(1-2):14-24. PubMed ID: 9593804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of local orphanin FQ in the tolerance induced by repeated microinjections of morphine into ventrolateral periaqueductal gray in rats.
    Ge ZJ; Zhang LC; Zeng YM; Dai TJ; Chang L; Wang JK; Cui GX; Tan YF; Zhao YP; Liu GJ
    Pharmacology; 2007; 80(4):261-8. PubMed ID: 17652947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced antinociception with repeated microinjections of apomorphine into the periaqueductal gray of male and female rats.
    Schoo SM; Bobeck EN; Morgan MM
    Behav Pharmacol; 2018 Apr; 29(2 and 3-Spec Issue):234-240. PubMed ID: 29256893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids.
    Wilson-Poe AR; Pocius E; Herschbach M; Morgan MM
    Pharmacol Biochem Behav; 2013 Jan; 103(3):444-9. PubMed ID: 23063785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray.
    Urban MO; Smith DJ
    J Pharmacol Exp Ther; 1993 May; 265(2):580-6. PubMed ID: 8496808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance induced by non-opioid analgesic microinjections into rat's periaqueductal gray and nucleus raphe.
    Tsiklauri N; Nozadze I; Gurtskaia G; Berishvili V; Abzianidze E; Tsagareli M
    Georgian Med News; 2010 Mar; (180):47-55. PubMed ID: 20413817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.