These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 13566142)

  • 1. Formaldehyde as an acceptor aldehyde for transketolase, and the biosynthesis of triose.
    DICKENS F; WILLIAMSON DH
    Nature; 1958 Jun; 181(4626):1790. PubMed ID: 13566142
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of the triose phosphate formed in the tryptophan synthetase reaction.
    CRAWFORD IP
    Biochim Biophys Acta; 1960 Dec; 45():405-7. PubMed ID: 13696310
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of sedoheptulose-7-phosphate from enzymatically obtained "active glycolic aldehyde" and ribose-5-phosphate with transketolase.
    PROCHOROFF NN; KATTERMANN R; HOLZER H
    Biochem Biophys Res Commun; 1962 Nov; 9():477-81. PubMed ID: 13986286
    [No Abstract]   [Full Text] [Related]  

  • 4. The interrelation transketolase and dihydroxyacetone synthase activities in the methylotrophic yeast Candida boidinii.
    Waites MJ; Quayle JR
    J Gen Microbiol; 1981 Jun; 124(2):309-16. PubMed ID: 6276498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201.
    Kato N; Higuchi T; Sakazawa C; Nishizawa T; Tani Y; Yamada H
    Biochim Biophys Acta; 1982 Apr; 715(2):143-50. PubMed ID: 7074134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and utilization of octulose-8-phosphate by transaldolase and transketolase.
    RACKER E; SCHROEDER E
    Arch Biochem Biophys; 1957 Jan; 66(1):241-3. PubMed ID: 13395544
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum.
    BRUNS FH; DUNWALD E; NOLTMANN E
    Biochem Z; 1958; 330(6):497-508. PubMed ID: 13596392
    [No Abstract]   [Full Text] [Related]  

  • 8. Participation of an active glycolaidehyde-enzyme in the transketolase-catalyzed reaction.
    DATTA AG; RACKER E
    Arch Biochem Biophys; 1959 Jun; 82(2):489-91. PubMed ID: 13661982
    [No Abstract]   [Full Text] [Related]  

  • 9. A thiamine pyrophosphate-glycoaldehyde compound ("active glycolaldehyde") as intermediate in the transketolase reaction.
    HOLZER H; KATTERMANN R; BUSCH D
    Biochem Biophys Res Commun; 1962 Apr; 7():167-72. PubMed ID: 13908635
    [No Abstract]   [Full Text] [Related]  

  • 10. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.
    Szekrenyi A; Garrabou X; Parella T; Joglar J; Bujons J; Clapés P
    Nat Chem; 2015 Sep; 7(9):724-9. PubMed ID: 26291944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous assay of dihydroxyacetone synthase and transketolase in a methylotrophic yeast grown in continuous culture. A cautionary note.
    Lindley ND; Waites MJ; Quayle JR
    J Gen Microbiol; 1981 Oct; 126(2):253-9. PubMed ID: 6279760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Condensation of triose-reductone with aromatic amines].
    FENECH G; TOMMASINI A
    Farmaco Sci; 1956; 11(3):197-208. PubMed ID: 13317991
    [No Abstract]   [Full Text] [Related]  

  • 13. Coupling of oxidation of substrates to reductive biosyntheses. I. Evidence of substrate specificity in the reductive synthesis of triose phosphate.
    HOBERMAN HD
    J Biol Chem; 1958 May; 232(1):9-16. PubMed ID: 13549392
    [No Abstract]   [Full Text] [Related]  

  • 14. DNA sequence of the yeast transketolase gene.
    Fletcher TS; Kwee IL; Nakada T; Largman C; Martin BM
    Biochemistry; 1992 Feb; 31(6):1892-6. PubMed ID: 1737042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUBSTRATE SPECIFICITY OF L-RHAMNULOSE 1-PHOSPHATE ADOLASE.
    CHIU TH; FEINGOLD DS
    Biochem Biophys Res Commun; 1965 May; 19():511-6. PubMed ID: 14339000
    [No Abstract]   [Full Text] [Related]  

  • 16. Aldehyde mutase and the dismutation of formaldehyde.
    KENDAL LP; RAMANATHAN AN
    Biochem J; 1951 Sep; 49(4):lvii-lviii. PubMed ID: 14886337
    [No Abstract]   [Full Text] [Related]  

  • 17. Amino acid synthesis from formaldehyde and hydroxylamine.
    ORO' J; KIMBALL A; FRITZ R; MASTER F
    Arch Biochem Biophys; 1959 Nov; 85():115-30. PubMed ID: 14429103
    [No Abstract]   [Full Text] [Related]  

  • 18. The synthesis of purines and thymine from formaldehyde in the rat.
    BYERRUM RU; FAIRLEY JL; HAMILL RL; HERRMANN RL
    Biochim Biophys Acta; 1956 Aug; 21(2):394-5. PubMed ID: 13363933
    [No Abstract]   [Full Text] [Related]  

  • 19. [Formaldehyde metabolism in semicarbazide intoxication].
    Dmytrenko MP; Shandrenko SH; Petrun' LM; Kishko TO; Sylonova NV; Latyshko NV; Hudkova OO; Sushkova VV
    Ukr Biokhim Zh (1999); 2010; 82(4):86-91. PubMed ID: 21516721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis.
    Rogers A; Kumarathunge DP; Lombardozzi DL; Medlyn BE; Serbin SP; Walker AP
    New Phytol; 2021 Apr; 230(1):17-22. PubMed ID: 33217768
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.