These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 1356703)

  • 1. Dye-coupling among frog (Rana catesbeiana) taste disk cells.
    Sata O; Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1992 Sep; 103(1):99-103. PubMed ID: 1356703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical properties and gustatory responses of various taste disk cells of frog fungiform papillae.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2008 Apr; 33(4):371-8. PubMed ID: 18245793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.
    Sato T; Nishishita K; Mineda T; Okada Y; Toda K
    Chem Senses; 2007 Jan; 32(1):3-10. PubMed ID: 16956970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage clamping of a frog (Rana catesbeiana) taste cell with a single microelectrode.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Sep; 106(1):37-41. PubMed ID: 8104758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taste cell responses in the frog are modulated by parasympathetic efferent nerve fibers.
    Sato T; Okada Y; Miyazaki T; Kato Y; Toda K
    Chem Senses; 2005 Nov; 30(9):761-9. PubMed ID: 16243966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye-coupling between term pregnant human myometrial cells before labor: carboxyfluorescein versus lucifer yellow.
    Ciray HN; Persson BE; Roomans GM; Ulmsten U
    Cell Biol Int; 1995 Jul; 19(7):609-17. PubMed ID: 7550069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane excitability of wing and rod cells in frog taste discs following denervation.
    Okuda-Akabane K; Fukami H; Narita K; Kitada Y
    Brain Res; 2006 Aug; 1103(1):145-9. PubMed ID: 16787642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology of morphologically identified cells of the bullfrog fungiform papilla.
    Takeuchi H; Tsunenari T; Kurahashi T; Kaneko A
    Neuroreport; 2001 Sep; 12(13):2957-62. PubMed ID: 11588610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical responses of supporting cells in the frog taste organ to chemical stimuli.
    Sata O; Sato T
    Comp Biochem Physiol A Comp Physiol; 1990; 95(1):115-20. PubMed ID: 1968805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye coupling among satellite glial cells in mammalian dorsal root ganglia.
    Huang TY; Cherkas PS; Rosenthal DW; Hanani M
    Brain Res; 2005 Mar; 1036(1-2):42-9. PubMed ID: 15725400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation.
    Sato T; Okada Y; Toda K
    Chem Senses; 2004 Oct; 29(8):651-7. PubMed ID: 15466810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Mar; 29(2):243-52. PubMed ID: 18972206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taste responsiveness of fungiform taste cells with action potentials.
    Yoshida R; Shigemura N; Sanematsu K; Yasumatsu K; Ishizuka S; Ninomiya Y
    J Neurophysiol; 2006 Dec; 96(6):3088-95. PubMed ID: 16971686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gap junction blocker beta-glycyrrhetinic acid on taste disk cells in frog.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Jun; 29(4):503-12. PubMed ID: 19145483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latency of gustatory neural impulses initiated in frog tongue.
    Sato T; Miyamoto T; Okada Y
    Brain Res; 1987 Oct; 424(2):333-42. PubMed ID: 3499962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic adenosine monophosphate as a second messenger in horizontal cell uncoupling in the teleost retina.
    Laufer M; Salas R; Medina R; Drujan B
    J Neurosci Res; 1989 Oct; 24(2):299-310. PubMed ID: 2555533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture.
    Ransom BR; Kettenmann H
    Glia; 1990; 3(4):258-66. PubMed ID: 2144505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of slow depolarizing potential in frog taste cell induced by parasympathetic efferent stimulation under hypoxia.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2007 May; 32(4):329-36. PubMed ID: 17301060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells.
    Sato T; Nishishita K; Kato Y; Okada Y; Toda K
    Chem Senses; 2006 May; 31(4):307-13. PubMed ID: 16469796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.