These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1356735)
21. Construction of Syrian hamster lines congenic at the polymorphic acetyltransferase locus (NAT2): acetylator genotype-dependent N- and O-acetylation of arylamine carcinogens. Hein DW; Doll MA; Rustan TD; Gray K; Ferguson RJ; Feng Y Toxicol Appl Pharmacol; 1994 Jan; 124(1):16-24. PubMed ID: 8291057 [TBL] [Abstract][Full Text] [Related]
22. Identification of genetically homozygous rapid and slow acetylators of drugs and environmental carcinogens among established inbred rabbit strains. Hein DW; Smolen TN; Fox RR; Weber WW J Pharmacol Exp Ther; 1982 Oct; 223(1):40-4. PubMed ID: 7120125 [TBL] [Abstract][Full Text] [Related]
23. DNA adduct levels in congenic rapid and slow acetylator mouse strains following chronic administration of 4-aminobiphenyl. Flammang TJ; Couch LH; Levy GN; Weber WW; Wise CK Carcinogenesis; 1992 Oct; 13(10):1887-91. PubMed ID: 1423849 [TBL] [Abstract][Full Text] [Related]
24. Polymorphic and monomorphic expression of arylamine carcinogen N-acetyltransferase isozymes in tumor target organ cytosols of Syrian hamsters congenic at the polymorphic acetyltransferase locus. Hein DW; Rustan TD; Bucher KD; Miller LS J Pharmacol Exp Ther; 1991 Nov; 259(2):699-704. PubMed ID: 1941618 [TBL] [Abstract][Full Text] [Related]
25. The N-acetylation of sulfamethazine and p-aminobenzoic acid by human liver slices in dynamic organ culture. Gunawardhana L; Barr J; Weir AJ; Brendel K; Sipes IG Drug Metab Dispos; 1991; 19(3):648-54. PubMed ID: 1680632 [TBL] [Abstract][Full Text] [Related]
26. Tissue distribution of N-acetyltransferase 1 and 2 catalyzing the N-acetylation of 4-aminobiphenyl and O-acetylation of N-hydroxy-4-aminobiphenyl in the congenic rapid and slow acetylator Syrian hamster. Hein DW; Doll MA; Nerland DE; Fretland AJ Mol Carcinog; 2006 Apr; 45(4):230-8. PubMed ID: 16482518 [TBL] [Abstract][Full Text] [Related]
27. Higher DNA adduct levels in urinary bladder and prostate of slow acetylator inbred rats administered 3,2'-dimethyl-4-aminobiphenyl. Jiang W; Feng Y; Hein DW Toxicol Appl Pharmacol; 1999 May; 156(3):187-94. PubMed ID: 10222311 [TBL] [Abstract][Full Text] [Related]
28. Acetylator phenotype-dependent and -independent expression of arylamine N-acetyltransferase isozymes in rapid and slow acetylator inbred rat liver. Hein DW; Rustan TD; Bucher KD; Martin WJ; Furman EJ Drug Metab Dispos; 1991; 19(5):933-7. PubMed ID: 1686239 [TBL] [Abstract][Full Text] [Related]
29. Polymorphic acetylation of arylamines and DNA-adduct formation. Weber WW; Levy GN; Martell KJ Princess Takamatsu Symp; 1990; 21():119-26. PubMed ID: 2134671 [TBL] [Abstract][Full Text] [Related]
31. Cloning, sequencing, and recombinant expression of NAT1, NAT2, and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and deactivation of aromatic amine carcinogens. Fretland AJ; Doll MA; Gray K; Feng Y; Hein DW Toxicol Appl Pharmacol; 1997 Feb; 142(2):360-6. PubMed ID: 9070359 [TBL] [Abstract][Full Text] [Related]
32. The S-acetyl coenzyme A-dependent metabolic activation of the carcinogen N-hydroxy-2-aminofluorene by human liver cytosol and its relationship to the aromatic amine N-acetyltransferase phenotype. Flammang TJ; Yamazoe Y; Guengerich FP; Kadlubar FF Carcinogenesis; 1987 Dec; 8(12):1967-70. PubMed ID: 3677322 [TBL] [Abstract][Full Text] [Related]
33. Hepatic acetylator phenotype in bladder cancer patients. Ladero JM; Kwok CK; Jara C; Fernandez L; Silmi AM; Tapia D; Uson AC Ann Clin Res; 1985; 17(3):96-9. PubMed ID: 4051447 [TBL] [Abstract][Full Text] [Related]
34. Acetylation phenotype, carcinogen-hemoglobin adducts, and cigarette smoking. Vineis P; Caporaso N; Tannenbaum SR; Skipper PL; Glogowski J; Bartsch H; Coda M; Talaska G; Kadlubar F Cancer Res; 1990 May; 50(10):3002-4. PubMed ID: 2334904 [TBL] [Abstract][Full Text] [Related]
35. Polymorphic N-acetylation of sulfamethazine and benzidine by human liver: implication for cancer risk? Peters JH; Gordon GR; Lin E; Green CE; Tyson CA Anticancer Res; 1990; 10(1):225-9. PubMed ID: 2334132 [TBL] [Abstract][Full Text] [Related]
36. Biochemical evidence for the coexistence of monomorphic and polymorphic N-acetyltransferase activities on a common protein in rabbit liver. Hein DW; Hirata M; Glowinski IB; Weber WW J Pharmacol Exp Ther; 1982 Jan; 220(1):1-7. PubMed ID: 7053406 [TBL] [Abstract][Full Text] [Related]
37. A unique pharmacogenetic expression of the N-acetylation polymorphism in the inbred hamster. Hein DW; Omichinski JG; Brewer JA; Weber WW J Pharmacol Exp Ther; 1982 Jan; 220(1):8-15. PubMed ID: 7053425 [TBL] [Abstract][Full Text] [Related]
38. Distribution of 2-aminofluorene and p-aminobenzoic acid N-acetyltransferase activity in tissues of C57BL/6J rapid and B6.A-NatS slow acetylator congenic mice. Chung JG; Levy GN; Weber WW Drug Metab Dispos; 1993; 21(6):1057-63. PubMed ID: 7905384 [TBL] [Abstract][Full Text] [Related]
39. N-acetylation pharmacogenetics. Michaelis-Menten constants for arylamine drugs as predictors of their N-acetylation rates in vivo. Andres HH; Weber WW Drug Metab Dispos; 1986; 14(4):382-5. PubMed ID: 2873982 [TBL] [Abstract][Full Text] [Related]
40. The role of acetylator genotype on hepatic and extrahepatic acetylation, deacetylation, and sulfation of 2-aminofluorene, 2-acetylaminofluorene, and N-hydroxy-2-acetylaminofluorene in the inbred hamster. Hein DW; Kirlin WG; Ogolla F; Trinidad A; Thompson LK; Ferguson RJ Drug Metab Dispos; 1986; 14(5):566-73. PubMed ID: 2876863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]