BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1356985)

  • 1. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D-nicotine oxidase.
    Brandsch R; Bichler V; Schmidt M; Buchner J
    J Biol Chem; 1992 Oct; 267(29):20844-9. PubMed ID: 1356985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoflavinylation of apo6-hydroxy-D-nicotine oxidase.
    Brandsch R; Bichler V
    J Biol Chem; 1991 Oct; 266(28):19056-62. PubMed ID: 1918024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine to serine replacements in 6-hydroxy-D-nicotine oxidase. Consequences for enzyme activity, cofactor incorporation, and formation of high molecular weight protein complexes with molecular chaperones (GroEL).
    Brandsch R; Bichler V; Mauch L; Decker K
    J Biol Chem; 1993 Jun; 268(17):12724-9. PubMed ID: 8099585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent flavinylation of 6-hydroxy-D-nicotine oxidase involves an energy-requiring process.
    Brandsch R; Bichler V
    FEBS Lett; 1987 Nov; 224(1):121-4. PubMed ID: 3315742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase.
    Ayling A; Baneyx F
    Protein Sci; 1996 Mar; 5(3):478-87. PubMed ID: 8868484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of FAD to 6-hydroxy-D-nicotine oxidase apoenzyme prevents degradation of the holoenzyme.
    Brandsch R; Bichler V; Krauss B
    Biochem J; 1989 Feb; 258(1):187-92. PubMed ID: 2649085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GroE facilitates refolding of citrate synthase by suppressing aggregation.
    Buchner J; Schmidt M; Fuchs M; Jaenicke R; Rudolph R; Schmid FX; Kiefhaber T
    Biochemistry; 1991 Feb; 30(6):1586-91. PubMed ID: 1671555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate-dependent flavinylation of 6-hydroxy-D-nicotine oxidase.
    Nagursky H; Bichler V; Brandsch R
    Eur J Biochem; 1988 Nov; 177(2):319-25. PubMed ID: 3056722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal and optimal mechanisms for GroE-mediated protein folding.
    Ben-Zvi AP; Chatellier J; Fersht AR; Goloubinoff P
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15275-80. PubMed ID: 9860959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES.
    Kubo T; Mizobata T; Kawata Y
    J Biol Chem; 1993 Sep; 268(26):19346-51. PubMed ID: 8103517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro.
    Brunschier R; Danner M; Seckler R
    J Biol Chem; 1993 Feb; 268(4):2767-72. PubMed ID: 8094077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding, flavinylation, and mitochondrial import of 6-hydroxy-D-nicotine oxidase fused to the presequence of rat dimethylglycine dehydrogenase.
    Stoltz M; Rysavy P; Kalousek F; Brandsch R
    J Biol Chem; 1995 Apr; 270(14):8016-22. PubMed ID: 7713902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP.
    Mizobata T; Akiyama Y; Ito K; Yumoto N; Kawata Y
    J Biol Chem; 1992 Sep; 267(25):17773-9. PubMed ID: 1355477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity.
    Mauch L; Bichler V; Brandsch R
    FEBS Lett; 1989 Oct; 257(1):86-8. PubMed ID: 2680607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of GroE with an all-beta-protein.
    Schmidt M; Buchner J
    J Biol Chem; 1992 Aug; 267(24):16829-33. PubMed ID: 1355088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GroE assists refolding of recombinant human pro-urokinase.
    Xu Z; Yang S; Zhu D
    J Biochem; 1997 Feb; 121(2):331-7. PubMed ID: 9089408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria.
    Stoltz M; Rassow J; Bückmann AF; Brandsch R
    J Biol Chem; 1996 Oct; 271(41):25208-12. PubMed ID: 8810280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment.
    Tieman BC; Johnston MF; Fisher MT
    J Biol Chem; 2001 Nov; 276(48):44541-50. PubMed ID: 11551947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation.
    Kawata Y; Nosaka K; Hongo K; Mizobata T; Nagai J
    FEBS Lett; 1994 May; 345(2-3):229-32. PubMed ID: 7911090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis, commitment and encapsulation during GroE-mediated folding.
    Beissinger M; Rutkat K; Buchner J
    J Mol Biol; 1999 Jun; 289(4):1075-92. PubMed ID: 10369783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.