These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1357749)

  • 1. Calcium channels coupled to glutamate release identified by omega-Aga-IVA.
    Turner TJ; Adams ME; Dunlap K
    Science; 1992 Oct; 258(5080):310-3. PubMed ID: 1357749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release.
    Turner TJ; Adams ME; Dunlap K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9518-22. PubMed ID: 8415733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals.
    Vázquez E; Sánchez-Prieto J
    Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms.
    Adams ME; Myers RA; Imperial JS; Olivera BM
    Biochemistry; 1993 Nov; 32(47):12566-70. PubMed ID: 8251474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.
    Scholz KP; Miller RJ
    J Neurosci; 1995 Jun; 15(6):4612-7. PubMed ID: 7790927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative actions of synthetic omega-grammotoxin SIA and synthetic omega-Aga-IVA on neuronal calcium entry and evoked release of neurotransmitters in vitro and in vivo.
    Keith RA; Mangano TJ; Lampe RA; DeFeo PA; Hyde MJ; Donzanti BA
    Neuropharmacology; 1995 Nov; 34(11):1515-28. PubMed ID: 8606798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A toxin (Aga-GI) from the venom of the spider Agelenopsis aperta inhibits the mammalian presynaptic Ca2+ channel coupled to glutamate exocytosis.
    Pocock JM; Nicholls DG
    Eur J Pharmacol; 1992 Aug; 226(4):343-50. PubMed ID: 1356813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential antagonism of transmitter release by subtypes of omega-agatoxins.
    Bindokas VP; Venema VJ; Adams ME
    J Neurophysiol; 1991 Aug; 66(2):590-601. PubMed ID: 1685511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nonpeptide alpha-eudexp6l from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive Ca2+ currents and synaptosomal 45Ca2+ uptake.
    Asakura K; Kanemasa T; Minagawa K; Kagawa K; Ninomiya M
    Brain Res; 1999 Mar; 823(1-2):169-76. PubMed ID: 10095023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism of synaptosomal calcium channels by subtypes of omega-agatoxins.
    Venema VJ; Swiderek KM; Lee TD; Hathaway GM; Adams ME
    J Biol Chem; 1992 Feb; 267(4):2610-5. PubMed ID: 1310319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE; Angus JA
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omega-agatoxins differentially block calcium channels in locust, chick and rat synaptosomes.
    Pocock JM; Venema VJ; Adams ME
    Neurochem Int; 1992 Feb; 20(2):263-70. PubMed ID: 1339015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion.
    Turner TJ; Dunlap K
    Neuropharmacology; 1995 Nov; 34(11):1469-78. PubMed ID: 8606794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus.
    Luebke JI; Dunlap K; Turner TJ
    Neuron; 1993 Nov; 11(5):895-902. PubMed ID: 7902110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices.
    Kimura M; Yamanishi Y; Hanada T; Kagaya T; Kuwada M; Watanabe T; Katayama K; Nishizawa Y
    Neuroscience; 1995 Jun; 66(3):609-15. PubMed ID: 7644024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type III omega-agatoxins: a family of probes for similar binding sites on L- and N-type calcium channels.
    Ertel EA; Warren VA; Adams ME; Griffin PR; Cohen CJ; Smith MM
    Biochemistry; 1994 May; 33(17):5098-108. PubMed ID: 8172884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.
    Sitges M; Galindo CA
    Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions among toxins that inhibit N-type and P-type calcium channels.
    McDonough SI; Boland LM; Mintz IM; Bean BP
    J Gen Physiol; 2002 Apr; 119(4):313-28. PubMed ID: 11929883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsphere embolism-induced changes in presynaptic function of the cerebral cortex in rats.
    Hayashi H; Takagi N; Kamimoto N; Takeo S
    Brain Res; 1996 Oct; 737(1-2):64-70. PubMed ID: 8930351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of class A calcium channels in the KCl induced Ca2+ influx in hippocampal synaptosomes.
    Malva JO; Ambrósio AF; Carvalho AP; Duarte CB; Carvalho CM
    Brain Res; 1995 Oct; 696(1-2):242-5. PubMed ID: 8574675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.