These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1358525)

  • 1. Inhibition of the transepithelial potential difference and short circuit current in the isolated frog skin by alloxan.
    Soto C; Reyes JL; Ramirez A; Paz F; Perez C
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 May; 102(1):29-32. PubMed ID: 1358525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alloxan decreases intracellular potassium content of the isolated frog skin epithelium.
    Soto C; Del Razo LM; Neri L
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Sep; 130(1):19-27. PubMed ID: 11544140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdependence between sodium transport, external chloride, and sodium/calcium exchanger in the isolated skin of the Rana pipiens.
    Soto C; Aguilar G; Jiménez L
    J Exp Zool; 2001 Jan; 289(1):23-32. PubMed ID: 11169490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ouabain and furosemide on transepithelial electrical parameters of the isolated shark ciliary epithelium.
    Wiederholt M; Zadunaisky JA
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1353-6. PubMed ID: 3038770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium transport and distribution of electrolytes in frog skin.
    Duncan RL; Watlington CO; Biber TU; Huf EG
    Physiol Chem Phys Med NMR; 1985; 17(2):155-72. PubMed ID: 3001793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of standard diuretics and ortho-vanadate on sodium transport across isolated frog skin.
    Eriksson O
    Acta Physiol Scand; 1984 Nov; 122(3):249-60. PubMed ID: 6097097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Cd++ on short-circuit current across epithelial membranes. I. Interactions with Ca++ and vasopressin on frog skin.
    Hillyard SD; Gonick HC
    J Membr Biol; 1976 Mar; 26(2-3):109-19. PubMed ID: 817028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturable K+ pathway across the outer border of frog skin (rana temporaria): kinetics and inhibition by Cs+ and other cations.
    Zeiske W; Van Driessche W
    J Membr Biol; 1979 May; 47(1):77-96. PubMed ID: 313452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of furosemide on unidirectional fluxes of sodium and chloride across the skin of the frog, Rana pipiens.
    Yorio T; Bentley PJ
    Biochim Biophys Acta; 1976 Dec; 455(3):831-6. PubMed ID: 1087163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of melittin on PD, resistance and short-circuit current in the frog gastric mucosa.
    Carrasquer G; Li M; Yang S; Schwartz M
    Biochim Biophys Acta; 1998 Mar; 1369(2):346-54. PubMed ID: 9518685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H+ pump in frog skin (Rana esculenta): identification and localization of a V-ATPase.
    Klein U; Timme M; Zeiske W; Ehrenfeld J
    J Membr Biol; 1997 May; 157(2):117-26. PubMed ID: 9151653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Ca2+ and prostaglandin in regulation of active Na+ transport in frog skin.
    Bjerregaard HF; Nielsen R
    Comp Biochem Physiol A Comp Physiol; 1990; 97(1):75-80. PubMed ID: 1979267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of isoproterenol on Na+ and K+ transport in frog skin epithelium.
    Cox TC; Grieme M; Woods R
    Biochim Biophys Acta; 1990 Feb; 1022(1):41-8. PubMed ID: 2302401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diacylglycerols stimulate short-circuit current across frog skin by increasing apical Na+ permeability.
    Civan MM; Peterson-Yantorno K; O'Brien TG
    J Membr Biol; 1987; 97(3):193-204. PubMed ID: 3498045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactin concentration in plasma of rats during anaesthesia and the effect of this concentration on short circuit current of isolated frog skin.
    Häberle DA; Ruhland G
    Pflugers Arch; 1976 Sep; 365(1):77-80. PubMed ID: 1086459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa.
    Rick R; Dörge A; Sesselmann E
    Pflugers Arch; 1988 Mar; 411(3):243-51. PubMed ID: 2454448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.