BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 13587558)

  • 1. A cytochemical study of the sulfhydryl groups of sea urchin eggs during the first cleavage.
    KAWAMURA N; DAN K
    J Biophys Biochem Cytol; 1958 Sep; 4(5):615-9. PubMed ID: 13587558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on sulfhydryl groups during cell division of sea urchin egg. II. Mass isolation of the egg cortex and change in its--SH groups during cell division.
    SAKAI H
    J Biophys Biochem Cytol; 1960 Dec; 8(3):603-7. PubMed ID: 13745476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHANGE IN THE GLYCOGEN CONTENT OF SEA URCHIN EGGS DURING EARLY DEVELOPMENT.
    Hino A; Yasumasu I
    Dev Growth Differ; 1979; 21(3):229-236. PubMed ID: 37281484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on sulfhydryl groups during cell division of sea urchin egg. III. SH groups of KC1-soluble proteins and their change during cleavage.
    SAKAI H
    J Biophys Biochem Cytol; 1960 Dec; 8(3):609-15. PubMed ID: 13745477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes.
    Czihak G; Kojima M; Linhart J; Vogel H
    Eur J Cell Biol; 1991 Aug; 55(2):255-61. PubMed ID: 1935990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical evidence for centrosomal phosphoproteins in mitotic sea urchin eggs.
    Kuriyama R; Rao PN; Borisy GG
    Cell Struct Funct; 1990 Feb; 15(1):13-20. PubMed ID: 2187620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some more speract derivatives associated with eggs of sea urchins, Pseudocentrotus depressus, Strongylocentrotus purpuratus, Hemicentrotus pulcherrimus and Anthocidaris crassispina.
    Suzuki N; Kajiura H; Nomura K; Garbers DL; Yoshino K; Kurita M; Tanaka H; Yamaguchi M
    Comp Biochem Physiol B; 1988; 89(4):687-93. PubMed ID: 3378407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of cleavage furrows from eggs of regular sea urchins and identification of furrow-specific proteins.
    Fujimoto H; Mabuchi I
    J Biochem; 1997 Sep; 122(3):518-24. PubMed ID: 9348078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin.
    Miki-Noumura T
    J Cell Sci; 1977 Apr; 24():203-16. PubMed ID: 893543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage.
    Hamaguchi Y; Toriyama M; Sakai H; Hiramoto Y
    J Cell Biol; 1985 Apr; 100(4):1262-72. PubMed ID: 3920225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of ribosomal proteins in sea urchin eggs following fertilization.
    Takeshima K; Nakano E
    Eur J Biochem; 1983 Dec; 137(3):437-43. PubMed ID: 6662106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo.
    Henson JH; Begg DA; Beaulieu SM; Fishkind DJ; Bonder EM; Terasaki M; Lebeche D; Kaminer B
    J Cell Biol; 1989 Jul; 109(1):149-61. PubMed ID: 2663877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SH compounds in mitosis. II. The effect of mercaptoethanol on the structure of the mitotic apparatus in sea urchin eggs.
    MAZIA D; ZIMMERMAN AM
    Exp Cell Res; 1958 Aug; 15(1):138-53. PubMed ID: 13574167
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism for increase in intracellular concentration of free calcium in fertilized sea urchin egg. A method for estimating intracellular concentration of free calcium.
    Nakamura M; Yasumasu I
    J Gen Physiol; 1974 Mar; 63(3):374-88. PubMed ID: 4856294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The isotopic effects of D2O in developing sea urchin eggs.
    Sumitro SB; Sato H
    Cell Struct Funct; 1989 Feb; 14(1):95-111. PubMed ID: 2720801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity.
    Wright SJ; Schatten G
    Cell Motil Cytoskeleton; 1995; 30(2):122-35. PubMed ID: 7606805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs.
    Schatten H; Schatten G; Mazia D; Balczon R; Simerly C
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):105-9. PubMed ID: 2417231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage initiation activities of microtubules and in vitro reassembled tubulins of sperm flagella.
    Iwamatsu T; Miki-Noumura T; Ohta T
    J Exp Zool; 1976 Jan; 195(1):97-106. PubMed ID: 1255123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STUDIES ON SULFHYDRYL GROUPS DURING CELL DIVISION OF SEA URCHIN EGG. VI. BEHAVIOR OF -SH GROUPS OF CORTICES OF EGGS TREATED WITH ETHER-SEA WATER.
    SAKAI H
    Exp Cell Res; 1963 Nov; 32():391-3. PubMed ID: 14080681
    [No Abstract]   [Full Text] [Related]  

  • 20. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs.
    Schatten H; Chakrabarti A
    Eur J Cell Biol; 1998 Jan; 75(1):9-20. PubMed ID: 9523150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.