These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 13587855)

  • 21. Modulation of malaria virulence by determinants of Plasmodium falciparum erythrocyte membrane protein-1 display.
    Fairhurst RM; Wellems TE
    Curr Opin Hematol; 2006 May; 13(3):124-30. PubMed ID: 16567953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coenzyme A requirement of malaria parasites: enzymes of coenzyme A biosynthesis in normal duck erythrocytes and erythrocytes infected with Plasmodium lophurae.
    Brohn FH; Trager W
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2456-8. PubMed ID: 166388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ability of the avian malaria parasite, Plasmodium lophurae, to infect erythrocytes of distantly related species of animals.
    McGHEE RB
    Am J Hyg; 1950 Jul; 52(1):42-7. PubMed ID: 15432439
    [No Abstract]   [Full Text] [Related]  

  • 24. The Plasmodium lophurae (avian malaria) ribosome.
    Sherman IW; Jones LA
    J Protozool; 1977 May; 24(2):331-4. PubMed ID: 881657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A.
    Sharling L; Enevold A; Sowa KM; Staalsoe T; Arnot DE
    Malar J; 2004 Sep; 3():31. PubMed ID: 15350207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipids of Plasmodium lophurae, and of erythrocytes and plasma of normal and P. lophurae-infected Pekin ducklings.
    Beach DH; Sherman IW; Holz GG
    J Parasitol; 1977 Feb; 63(1):62-75. PubMed ID: 845741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte.
    Hayakawa EH; Kobayashi S; Matsuoka H
    Biomed Res Int; 2015; 2015():642729. PubMed ID: 26557685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced glycerol incorporation into phospholipids contributes to impaired intra-erythrocytic growth of glycerol kinase knockout Plasmodium falciparum parasites.
    Naidoo K; Coetzer TL
    Biochim Biophys Acta; 2013 Nov; 1830(11):5326-34. PubMed ID: 23954205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [In vitro susceptibility of P. falciparum isolates from Abidjan (Côte d'Ivoire) to quinine, artesunate and chloroquine].
    Touré AO; Koné LP; Jambou R; Konan TD; Demba S; Beugre GE; Koné M
    Sante; 2008; 18(1):43-7. PubMed ID: 18684691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of the plasma membrane of human erythrocytes infected with the malarial parasite Plasmodium falciparum.
    Gruenberg J; Sherman IW
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1087-91. PubMed ID: 6341989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunological cross-reactivity of the histidine-rich protein of Plasmodium lophurae and the knob protein of Plasmodium falciparum.
    Kilejian A
    J Parasitol; 1983 Apr; 69(2):257-61. PubMed ID: 6189987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine proteases of malaria parasites.
    Rosenthal PJ
    Int J Parasitol; 2004 Dec; 34(13-14):1489-99. PubMed ID: 15582526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folate metabolism pathway and Plasmodium falciparum malaria infection in pregnancy.
    Chango A; Abdennebi-Najar L
    Nutr Rev; 2011 Jan; 69(1):34-40. PubMed ID: 21198633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite.
    Stanisic DI; Gerrard J; Fink J; Griffin PM; Liu XQ; Sundac L; Sekuloski S; Rodriguez IB; Pingnet J; Yang Y; Zhou Y; Trenholme KR; Wang CY; Hackett H; Chan JA; Langer C; Hanssen E; Hoffman SL; Beeson JG; McCarthy JS; Good MF
    Infect Immun; 2016 Sep; 84(9):2689-96. PubMed ID: 27382019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homology between a histidine-rich protein from Plasmodium lophurae and a protein associated with the knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum.
    Kilejian A
    J Exp Med; 1980 Jun; 151(6):1534-8. PubMed ID: 6991629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trafficking of the signature protein of intra-erythrocytic Plasmodium berghei-induced structures, IBIS1, to P. falciparum Maurer's clefts.
    Petersen W; Matuschewski K; Ingmundson A
    Mol Biochem Parasitol; 2015; 200(1-2):25-9. PubMed ID: 25956941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the immune response in Plasmodium falciparum malaria: IV. T cell dependent production of immunoglobulin and anti-P. falciparum antibodies in vitro.
    Kabilan L; Troye-Blomberg M; Patarroyo ME; Björkman A; Perlmann P
    Clin Exp Immunol; 1987 May; 68(2):288-97. PubMed ID: 3308213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Administration of pyrimethamine with folic acid and folinic acids in human malaria.
    HURLY MG
    Trans R Soc Trop Med Hyg; 1959 Sep; 53():410-1. PubMed ID: 14405525
    [No Abstract]   [Full Text] [Related]  

  • 39. Folic acid metabolism and malaria.
    Metz J
    Food Nutr Bull; 2007 Dec; 28(4 Suppl):S540-9. PubMed ID: 18297892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid metabolism and protein synthesis in malarial parasites.
    Sherman IW
    Bull World Health Organ; 1977; 55(2-3):265-76. PubMed ID: 338183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.