These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 1358946)

  • 1. The relative importance of the routes and sources of wound contamination during general surgery. II. Airborne.
    Whyte W; Hambraeus A; Laurell G; Hoborn J
    J Hosp Infect; 1992 Sep; 22(1):41-54. PubMed ID: 1358946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative importance of routes and sources of wound contamination during general surgery. I. Non-airborne.
    Whyte W; Hambraeus A; Laurell G; Hoborn J
    J Hosp Infect; 1991 Jun; 18(2):93-107. PubMed ID: 1678765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Routes and sources of Staphylococcus aureus transmitted to the surgical wound during cardiothoracic surgery: possibility of preventing wound contamination by use of special scrub suits.
    Tammelin A; Hambraeus A; Ståhle E
    Infect Control Hosp Epidemiol; 2001 Jun; 22(6):338-46. PubMed ID: 11519910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne contamination and surgical site infection: Could a thirty-year-old idea help solve the problem?
    Persson M
    Med Hypotheses; 2019 Nov; 132():109351. PubMed ID: 31421424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study.
    Friberg B; Friberg S; Burman LG
    J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental bacteriology in the unidirectional (horizontal) operating room.
    Nelson CL
    Arch Surg; 1979 Jul; 114(7):778-82. PubMed ID: 454170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airborne bacterial contamination of operative wounds.
    Alexakis PG; Feldon PG; Wellisch M; Richter RE; Finegold SM
    West J Med; 1976 May; 124(5):361-9. PubMed ID: 1274336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of bacteria in the operating room environment and its relation to ventricular shunt infections: a prospective study.
    Duhaime AC; Bonner K; McGowan KL; Schut L; Sutton LN; Plotkin S
    Childs Nerv Syst; 1991 Aug; 7(4):211-4. PubMed ID: 1933917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wound ventilation with ultraclean air for prevention of direct airborne contamination during surgery.
    Persson M; van der Linden J
    Infect Control Hosp Epidemiol; 2004 Apr; 25(4):297-301. PubMed ID: 15108726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiologic environment of the conventional operating room.
    Fitzgerald RH
    Arch Surg; 1979 Jul; 114(7):772-5. PubMed ID: 454169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-sporeforming anaerobic bacteria in clean surgical wounds--air and skin contamination.
    Benediktsdóttir E; Kolstad K
    J Hosp Infect; 1984 Mar; 5(1):38-49. PubMed ID: 6202746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of drape permeability on wound contamination during mastectomy.
    Werner HP; Hoborn J; Schön K; Petri E
    Eur J Surg; 1991; 157(6-7):379-83. PubMed ID: 1681913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wound infections after surgery in a modern operating suite: clinical, bacteriological and epidemiological findings.
    Bengtsson S; Hambraeus A; Laurell G
    J Hyg (Lond); 1979 Aug; 83(1):41-57. PubMed ID: 379212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting bacterial populations based on airborne particulates: a study performed in nonlaminar flow operating rooms during joint arthroplasty surgery.
    Stocks GW; Self SD; Thompson B; Adame XA; O'Connor DP
    Am J Infect Control; 2010 Apr; 38(3):199-204. PubMed ID: 19913327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body-exhaust suit versus occlusive clothing. A randomised, prospective trial using air and wound bacterial counts.
    Der Tavitian J; Ong SM; Taub NA; Taylor GJ
    J Bone Joint Surg Br; 2003 May; 85(4):490-4. PubMed ID: 12793550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgical Smoke and Airborne Microbial Contamination in Operating Theatres: Influence of Ventilation and Surgical Phases.
    Romano F; Milani S; Gustén J; Joppolo CM
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32727035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventilation design conditions associated with airborne bacteria levels within the wound area during surgical procedures: a systematic review.
    Aganovic A; Cao G; Fecer T; Ljungqvist B; Lytsy B; Radtke A; Reinmüller B; Traversari R
    J Hosp Infect; 2021 Jul; 113():85-95. PubMed ID: 33930488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of airborne bacterial contamination of wounds.
    Whyte W; Hodgson R; Tinkler J
    J Hosp Infect; 1982 Jun; 3(2):123-35. PubMed ID: 6181129
    [No Abstract]   [Full Text] [Related]  

  • 19. Air contamination for predicting wound contamination in clean surgery: A large multicenter study.
    Birgand G; Toupet G; Rukly S; Antoniotti G; Deschamps MN; Lepelletier D; Pornet C; Stern JB; Vandamme YM; van der Mee-Marquet N; Timsit JF; Lucet JC
    Am J Infect Control; 2015 May; 43(5):516-21. PubMed ID: 25752955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conventionally ventilated operating theatre and air contamination control during cardiac surgery--bacteriological and particulate matter control garment options for low level contamination.
    Verkkala K; Eklund A; Ojajärvi J; Tiittanen L; Hoborn J; Mäkelä P
    Eur J Cardiothorac Surg; 1998 Aug; 14(2):206-10. PubMed ID: 9755009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.