These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 1359068)
41. Mechanical characterization of pharmaceutical solids: a comparison between rheological tests performed under static and dynamic porosity conditions. Bonacucina G; Cespi M; Misici-Falzi M; Palmieri GF Eur J Pharm Biopharm; 2007 Aug; 67(1):277-83. PubMed ID: 17276665 [TBL] [Abstract][Full Text] [Related]
42. Non-invasive and rapid analysis for observation of internal structure of press-coated tablet using X-ray computed tomography. Tokudome Y; Ohshima H; Otsuka M Drug Dev Ind Pharm; 2009 Jun; 35(6):678-82. PubMed ID: 19274513 [TBL] [Abstract][Full Text] [Related]
43. Impact breakage of pharmaceutical tablets. Hare C; Bonakdar T; Ghadiri M; Strong J Int J Pharm; 2018 Jan; 536(1):370-376. PubMed ID: 29197564 [TBL] [Abstract][Full Text] [Related]
44. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique. Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934 [TBL] [Abstract][Full Text] [Related]
45. Differences between eccentric and rotary tablet machines in the evaluation of powder densification behaviour. Palmieri GF; Joiris E; Bonacucina G; Cespi M; Mercuri A Int J Pharm; 2005 Jul; 298(1):164-75. PubMed ID: 15951144 [TBL] [Abstract][Full Text] [Related]
46. Downscaling of the tableting process: Feasibility of miniaturized forced feeders on a high-speed rotary tablet press. Grymonpré W; Blahova Prudilova B; Vanhoorne V; Van Snick B; Detobel F; Remon JP; De Beer T; Vervaet C Int J Pharm; 2018 Oct; 550(1-2):477-485. PubMed ID: 30196140 [TBL] [Abstract][Full Text] [Related]
47. An experimental study of die filling of pharmaceutical powders using a rotary die filling system. Zakhvatayeva A; Zhong W; Makroo HA; Hare C; Wu CY Int J Pharm; 2018 Dec; 553(1-2):84-96. PubMed ID: 30321642 [TBL] [Abstract][Full Text] [Related]
48. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method. Otoguro S; Hayashi Y; Miura T; Uehara N; Utsumi S; Onuki Y; Obata Y; Takayama K Chem Pharm Bull (Tokyo); 2015; 63(11):890-900. PubMed ID: 26279237 [TBL] [Abstract][Full Text] [Related]
49. In-die evaluation of capping tendency of pharmaceutical tablets using force-displacement curve and stress relaxation parameter. Nakamura H; Sugino Y; Watano S Chem Pharm Bull (Tokyo); 2012; 60(6):772-7. PubMed ID: 22689430 [TBL] [Abstract][Full Text] [Related]
50. Modified Young's modulus of microcrystalline cellulose tablets and the directed continuum percolation model. Kuentz M; Leuenberger H Pharm Dev Technol; 1998 Feb; 3(1):13-9. PubMed ID: 9532596 [TBL] [Abstract][Full Text] [Related]
51. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415 [TBL] [Abstract][Full Text] [Related]
52. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644 [TBL] [Abstract][Full Text] [Related]
53. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy. Otsuka Y; Yamamoto M; Tanaka H; Otsuka M Biomed Mater Eng; 2015; 25(3):223-36. PubMed ID: 26407109 [TBL] [Abstract][Full Text] [Related]
54. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation. Wang Y; Han X; Pan J; Sinka C J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898 [TBL] [Abstract][Full Text] [Related]
55. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging. Ellison CD; Ennis BJ; Hamad ML; Lyon RC J Pharm Biomed Anal; 2008 Sep; 48(1):1-7. PubMed ID: 18539424 [TBL] [Abstract][Full Text] [Related]
56. Effects of automated external lubrication on tablet properties and the stability of eprazinone hydrochloride. Yamamura T; Ohta T; Taira T; Ogawa Y; Sakai Y; Moribe K; Yamamoto K Int J Pharm; 2009 Mar; 370(1-2):1-7. PubMed ID: 19059327 [TBL] [Abstract][Full Text] [Related]
57. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test. Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313 [TBL] [Abstract][Full Text] [Related]
58. Impact of the digital revolution on the future of pharmaceutical formulation science. Leuenberger H; Leuenberger MN Eur J Pharm Sci; 2016 May; 87():100-11. PubMed ID: 26876764 [TBL] [Abstract][Full Text] [Related]
59. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer. Kondo H; Toyota H; Kamiya T; Yamashita K; Hakomori T; Imoto J; Kimura SI; Iwao Y; Itai S Chem Pharm Bull (Tokyo); 2017; 65(9):848-853. PubMed ID: 28867712 [TBL] [Abstract][Full Text] [Related]
60. The reality of in-line tablet coating. Cahyadi C; Chan LW; Heng PW Pharm Dev Technol; 2013 Feb; 18(1):2-16. PubMed ID: 21649557 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]