These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 1359558)
1. A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc. Hukins DW Proc Biol Sci; 1992 Sep; 249(1326):281-5. PubMed ID: 1359558 [TBL] [Abstract][Full Text] [Related]
2. An analytical model of intervertebral disc mechanics. McNally DS; Arridge RG J Biomech; 1995 Jan; 28(1):53-68. PubMed ID: 7852442 [TBL] [Abstract][Full Text] [Related]
3. Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Yang B; O'Connell GD Biomech Model Mechanobiol; 2017 Dec; 16(6):2005-2015. PubMed ID: 28733922 [TBL] [Abstract][Full Text] [Related]
4. A mathematical model of the compression of a spinal disc. Ngwa M; Agyingi E Math Biosci Eng; 2011 Oct; 8(4):1061-83. PubMed ID: 21936600 [TBL] [Abstract][Full Text] [Related]
5. Radial bulging of the annulus fibrosus during compression of the intervertebral disc. Klein JA; Hickey DS; Hukins DW J Biomech; 1983; 16(3):211-7. PubMed ID: 6863336 [TBL] [Abstract][Full Text] [Related]
6. Proteoglycans and collagen in the intervertebral disc of the rhesus monkey (Macaca mulatta). Stoeckelhuber M; Brueckner S; Spohr G; Welsch U Ann Anat; 2005 Mar; 187(1):35-42. PubMed ID: 15835398 [TBL] [Abstract][Full Text] [Related]
7. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Perie DS; Maclean JJ; Owen JP; Iatridis JC Ann Biomed Eng; 2006 May; 34(5):769-77. PubMed ID: 16598654 [TBL] [Abstract][Full Text] [Related]
8. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions. Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932 [TBL] [Abstract][Full Text] [Related]
9. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. Guerin HL; Elliott DM J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747 [TBL] [Abstract][Full Text] [Related]
10. Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state. Michalek AJ; Gardner-Morse MG; Iatridis JC J Biomech; 2012 Apr; 45(7):1227-31. PubMed ID: 22342138 [TBL] [Abstract][Full Text] [Related]
11. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study. Rao AA; Dumas GA J Biomed Eng; 1991 Mar; 13(2):139-51. PubMed ID: 2033950 [TBL] [Abstract][Full Text] [Related]
12. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Hickey DS; Hukins DW Spine (Phila Pa 1976); 1980; 5(2):106-16. PubMed ID: 6446156 [TBL] [Abstract][Full Text] [Related]
13. Effects of axial traction stress on solute transport and proteoglycan synthesis in the porcine intervertebral disc in vitro. Terahata N; Ishihara H; Ohshima H; Hirano N; Tsuji H Eur Spine J; 1994; 3(6):325-30. PubMed ID: 7866861 [TBL] [Abstract][Full Text] [Related]
14. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. McMorran JG; Gregory DE J Biomech Eng; 2021 May; 143(5):. PubMed ID: 33454730 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
16. On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Noailly J; Planell JA; Lacroix D Biomech Model Mechanobiol; 2011 Apr; 10(2):203-19. PubMed ID: 20532944 [TBL] [Abstract][Full Text] [Related]
17. Compressive properties of fibrous repair tissue compared to nucleus and annulus. Freeman AL; Buttermann GR; Beaubien BP; Rochefort WE J Biomech; 2013 Jun; 46(10):1714-21. PubMed ID: 23643028 [TBL] [Abstract][Full Text] [Related]
18. Derivation of inter-lamellar behaviour of the intervertebral disc annulus. Mengoni M; Luxmoore BJ; Wijayathunga VN; Jones AC; Broom ND; Wilcox RK J Mech Behav Biomed Mater; 2015 Aug; 48():164-172. PubMed ID: 25955558 [TBL] [Abstract][Full Text] [Related]
19. Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading. Ranu HS Proc Inst Mech Eng H; 1990; 204(3):141-6. PubMed ID: 2133780 [TBL] [Abstract][Full Text] [Related]
20. Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc. Adam C; Rouch P; Skalli W J Biomech; 2015 Dec; 48(16):4303-8. PubMed ID: 26549764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]