These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 1359948)

  • 1. Presynaptic modulation of sensory afferents in the invertebrate and vertebrate nervous system.
    Watson AH
    Comp Biochem Physiol Comp Physiol; 1992 Oct; 103(2):227-39. PubMed ID: 1359948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals.
    Petralia RS; Wang YX; Mattson MP; Yao PJ
    Neuromolecular Med; 2017 Sep; 19(2-3):193-240. PubMed ID: 28612182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA-immunoreactivity in processes presynaptic to the terminals of afferents from a locust leg proprioceptor.
    Watson AH; Burrows M; Leitch B
    J Neurocytol; 1993 Jul; 22(7):547-57. PubMed ID: 8410076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.
    Rustioni A
    Arch Ital Biol; 2005 May; 143(2):103-12. PubMed ID: 16106991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic inhibition in the vertebrate spinal cord revisited.
    Rudomin P; Schmidt RF
    Exp Brain Res; 1999 Nov; 129(1):1-37. PubMed ID: 10550500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic modulation of sensory neurons in the segmental ganglia of arthropods.
    Watson AH
    Microsc Res Tech; 2002 Aug; 58(4):262-71. PubMed ID: 12214294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axoaxonic synapses on terminals of group II muscle spindle afferent axons in the spinal cord of the cat.
    Maxwell DJ; Riddell JS
    Eur J Neurosci; 1999 Jun; 11(6):2151-9. PubMed ID: 10336683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat.
    Watson AH; Hughes DI; Bazzaz AA
    J Comp Neurol; 2002 Oct; 452(4):367-80. PubMed ID: 12355419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynorphin-immunoreactive terminals in the rat nucleus accumbens: cellular sites for modulation of target neurons and interactions with catecholamine afferents.
    Van Bockstaele EJ; Sesack SR; Pickel VM
    J Comp Neurol; 1994 Mar; 341(1):1-15. PubMed ID: 7911809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn.
    Glazer EJ; Basbaum AI
    Neuroscience; 1983 Oct; 10(2):357-76. PubMed ID: 6355893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord.
    Watson AH
    J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation.
    Davis GW; Murphey RK
    J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish.
    Cattaert D; El Manira A
    J Neurosci; 1999 Jul; 19(14):6079-89. PubMed ID: 10407044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local control of information flow in segmental and ascending collaterals of single afferents.
    LomelĂ­ J; Quevedo J; Linares P; Rudomin P
    Nature; 1998 Oct; 395(6702):600-4. PubMed ID: 9783585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and morphological correlates of presynaptic inhibition in primary afferents of the lamprey spinal cord.
    Batueva I; Tsvetkov E; Sagatelyan A; Buchanan JT; Vesselkin N; Adanina V; Suderevskaya E; Rio JP; Reperant J
    Neuroscience; 1999; 88(3):975-87. PubMed ID: 10363832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei.
    Bae YC; Ihn HJ; Park MJ; Ottersen OP; Moritani M; Yoshida A; Shigenaga Y
    J Comp Neurol; 2000 Mar; 418(3):299-309. PubMed ID: 10701828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors.
    Stein W; Schmitz J
    J Neurophysiol; 1999 Jul; 82(1):512-4. PubMed ID: 10400981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat.
    Bae YC; Nakagawa S; Yasuda K; Yabuta NH; Yoshida A; Pil PK; Moritani M; Chen K; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1996 Oct; 374(3):421-35. PubMed ID: 8906508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA and glycine in synaptic microcircuits associated with physiologically characterized primary afferents of cat trigeminal principal nucleus.
    Bae YC; Park KS; Bae JY; Paik SK; Ahn DK; Moritani M; Yoshida A; Shigenaga Y
    Exp Brain Res; 2005 May; 162(4):449-57. PubMed ID: 15678357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term facilitation in Aplysia involves increase in transmitter release.
    Dale N; Schacher S; Kandel ER
    Science; 1988 Jan; 239(4837):282-5. PubMed ID: 2892269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.