These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1359967)
1. Probing the active site of the reconstituted aspartate/glutamate carrier from mitochondria. Structure/function relationship involving one lysine and two cysteine residues. Stappen R; Dierks T; Bröer A; Krämer R Eur J Biochem; 1992 Nov; 210(1):269-77. PubMed ID: 1359967 [TBL] [Abstract][Full Text] [Related]
2. Probing the active site of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria: carbodiimide-catalyzed acylation of a functional lysine residue. Dierks T; Stappen R; Salentin A; Krämer R Biochim Biophys Acta; 1992 Jan; 1103(1):13-24. PubMed ID: 1346091 [TBL] [Abstract][Full Text] [Related]
3. Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a performed channel as a structural requirement of carrier-mediated transport. Dierks T; Salentin A; Krämer R Biochim Biophys Acta; 1990 Oct; 1028(3):281-8. PubMed ID: 1699601 [TBL] [Abstract][Full Text] [Related]
4. The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. Dierks T; Salentin A; Heberger C; Krämer R Biochim Biophys Acta; 1990 Oct; 1028(3):268-80. PubMed ID: 1977471 [TBL] [Abstract][Full Text] [Related]
5. Relationships of Cysteine and Lysine residues with the substrate binding site of the mitochondrial ornithine/citrulline carrier: an inhibition kinetic approach combined with the analysis of the homology structural model. Tonazzi A; Giangregorio N; Palmieri F; Indiveri C Biochim Biophys Acta; 2005 Dec; 1718(1-2):53-60. PubMed ID: 16321608 [TBL] [Abstract][Full Text] [Related]
6. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Dierks T; Riemer E; Krämer R Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025 [TBL] [Abstract][Full Text] [Related]
7. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM; Sloan RL; Cordes KS Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372 [TBL] [Abstract][Full Text] [Related]
8. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine. Schroers A; Krämer R; Wohlrab H J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701 [TBL] [Abstract][Full Text] [Related]
9. Interpreting the effects of specific protein modification on antiport coupling mechanisms: the case of the aspartate/glutamate exchanger. Krupka RM Biochim Biophys Acta; 1995 May; 1236(1):1-9. PubMed ID: 7794936 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and energetic characterization of solute flux through the reconstituted aspartate/glutamate carrier from beef heart mitochondria after modification with mercurials. Herick K; Krämer R Biochim Biophys Acta; 1995 Aug; 1238(1):63-71. PubMed ID: 7654752 [TBL] [Abstract][Full Text] [Related]
11. Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria. Bisaccia F; De Palma A; Palmieri F Biochim Biophys Acta; 1992 May; 1106(2):291-6. PubMed ID: 1317723 [TBL] [Abstract][Full Text] [Related]
12. Modification of hemoglobin with site-directed bifunctional reagents. Kavanaugh MP; Shih DT; Jones RT Acta Haematol; 1987; 78(2-3):99-104. PubMed ID: 3120483 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. Jennings ML; Anderson MP J Biol Chem; 1987 Feb; 262(4):1691-7. PubMed ID: 2879841 [TBL] [Abstract][Full Text] [Related]
14. On the nature of the interaction between 4,4'-diisothiocyanostilbene 2,2'-disulfonic acid and microsomal glucose-6-phosphatase. Evidence for the involvement of sulfhydryl groups of the phosphohydrolase. Speth M; Schulze HU Eur J Biochem; 1988 May; 174(1):111-7. PubMed ID: 2836198 [TBL] [Abstract][Full Text] [Related]
15. The effects of amino acid-reactive reagents on the functioning of the inositol 1,4,5-trisphosphate-sensitive calcium channel from rat cerebellum. Michelangeli F Cell Signal; 1993 Jan; 5(1):33-9. PubMed ID: 7680878 [TBL] [Abstract][Full Text] [Related]
16. Stilbene disulfonic acids. CD4 antagonists that block human immunodeficiency virus type-1 growth at multiple stages of the virus life cycle. Cardin AD; Smith PL; Hyde L; Blankenship DT; Bowlin TL; Schroeder K; Stauderman KA; Taylor DL; Tyms AS J Biol Chem; 1991 Jul; 266(20):13355-63. PubMed ID: 2071607 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the chloride carrier in the plasmalemma of the alga Valonia utricularis: the inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Spiess I; Wang J; Benz R; Zimmermann U Biochim Biophys Acta; 1993 Jun; 1149(1):93-101. PubMed ID: 8318534 [TBL] [Abstract][Full Text] [Related]
18. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. Sluse FE; Evens A; Dierks T; Duyckaerts C; Sluse-Goffart CM; Krämer R Biochim Biophys Acta; 1991 Jul; 1058(3):329-38. PubMed ID: 2065061 [TBL] [Abstract][Full Text] [Related]
19. Conformational change of band 3 protein induced by diethyl pyrocarbonate modification in human erythrocyte ghosts. Izuhara K; Okubo K; Hamasaki N Biochemistry; 1989 May; 28(11):4725-8. PubMed ID: 2765508 [TBL] [Abstract][Full Text] [Related]
20. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Ellis HR; Poole LB Biochemistry; 1997 Dec; 36(48):15013-8. PubMed ID: 9398227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]