These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1360352)

  • 1. Cadmium inhibits stimulus-response coupling in skate (Raja erinacea) electric organ.
    Brown OM; Andrake JS
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Jul; 102(3):439-46. PubMed ID: 1360352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of acetylcholine release from presynaptic terminals of skate electric organ by calcium channel antagonists: a detailed pharmacological study.
    Richardson CM; Dowdall MJ; Bowman D
    Neuropharmacology; 1996; 35(11):1537-46. PubMed ID: 9025101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel pharmacological sensitivity of the presynaptic calcium channels controlling acetylcholine release in skate electric organ.
    Richardson CM; Dowdall MJ; Green AC; Bowman D
    J Neurochem; 1995 Feb; 64(2):944-7. PubMed ID: 7830090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of subtype-specific Ca(2+)-antagonists and Ca(2+)-free media on the field stimulation-evoked release of ATP and [3H]acetylcholine from rat habenula slices.
    Sperlágh B; András I; Vizi S
    Neurochem Res; 1997 Aug; 22(8):967-75. PubMed ID: 9239752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine release evoked by single or a few nerve impulses in the electric organ of Torpedo.
    Dunant Y; Eder L; Servetiadis-Hirt L
    J Physiol; 1980 Jan; 298():185-203. PubMed ID: 7359388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cadmium, mercury and calcium accumulations by isolated hepatocytes of the small skate (Raja erinacea) and rat.
    Blazka ME; Yoshida M; Shaikh ZA
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Apr; 101(3):631-9. PubMed ID: 1354142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction.
    Dunant Y; Muller D
    J Physiol; 1986 Oct; 379():461-78. PubMed ID: 2435895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic inhibition of acetylcholine release in the electric organ of Torpedo.
    Dunant Y; Walker AI
    Eur J Pharmacol; 1982 Feb; 78(2):201-12. PubMed ID: 6281033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder.
    Somogyi GT; Zernova GV; Tanowitz M; de Groat WC
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In favour of the vesicular hypothesis: neurochemical evidence that vesamicol (AH5183) inhibits stimulation-evoked release of acetylcholine from neuromuscular junction.
    Vizi ES
    Br J Pharmacol; 1989 Nov; 98(3):898-902. PubMed ID: 2590773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Na+,K+-ATPase by ouabain opens calcium channels coupled to acetylcholine release in guinea pig myenteric plexus.
    Gomez RS; Gomez MV; Prado MA
    J Neurochem; 1996 Apr; 66(4):1440-7. PubMed ID: 8627296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of evoked acetylcholine release: two different mechanisms in the Torpedo electric organ.
    Muller D; Loctin F; Dunant Y
    Eur J Pharmacol; 1987 Jan; 133(2):225-34. PubMed ID: 2434349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of [3H]acetylcholine from the isolated rat or guinea-pig trachea evoked by preganglionic nerve stimulation; a comparison with transmural stimulation.
    Wessler I; Klein A; Pohan D; Maclagan J; Racké K
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Oct; 344(4):403-11. PubMed ID: 1766470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation by 4-aminopyridine of quantal acetylcholine release at the Torpedo nerve-electroplaque junction.
    Muller D
    J Physiol; 1986 Oct; 379():479-93. PubMed ID: 3031284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of lactate on acetylcholine release evoked by various stimuli from Torpedo synaptosomes.
    Gaudry-Talarmain YM
    Eur J Pharmacol; 1986 Oct; 129(3):235-43. PubMed ID: 2430814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cetiedil, a drug that inhibits acetylcholine release in Torpedo electric organ.
    Gaudry-Talarmain YM; Israël M; Lesbats B; Morel N
    J Neurochem; 1987 Aug; 49(2):548-54. PubMed ID: 3598585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aconitine-induced increase and decrease of acetylcholine release in the mouse phrenic nerve-hemidiaphragm muscle preparation.
    Okazaki M; Kimura I; Kimura M
    Jpn J Pharmacol; 1994 Dec; 66(4):421-6. PubMed ID: 7723217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of neurally-evoked transmitter release by calcium channel antagonists in rat parasympathetic ganglia.
    Seabrook GR; Adams DJ
    Br J Pharmacol; 1989 Aug; 97(4):1125-36. PubMed ID: 2571381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.