These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1360622)

  • 1. Histochemical evaluation of energy metabolism in rat glioma.
    Ikezaki K; Black KL; Conklin SG; Becker DP
    Neurol Res; 1992 Sep; 14(4):289-93. PubMed ID: 1360622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure.
    Oudard S; Boitier E; Miccoli L; Rousset S; Dutrillaux B; Poupon MF
    Anticancer Res; 1997; 17(3C):1903-11. PubMed ID: 9216643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth control of C6 glioma in vivo by nerve growth factor.
    Kimura S; Yoshino A; Katayama Y; Watanabe T; Fukushima T
    J Neurooncol; 2002 Sep; 59(3):199-205. PubMed ID: 12241115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of exogenous lactate on rat glioma metabolism.
    Bouzier-Sore AK; Canioni P; Merle M
    J Neurosci Res; 2001 Sep; 65(6):543-8. PubMed ID: 11550222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma.
    Eriksson JA; Wanka C; Burger MC; Urban H; Hartel I; von Renesse J; Harter PN; Mittelbronn M; Steinbach JP; Rieger J
    J Neurochem; 2018 Feb; 144(4):421-430. PubMed ID: 29178334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially Resolved Bioenergetic and Genetic Reprogramming Through the Brain of Rats Bearing Implanted C6 Gliomas As Detected by Multinuclear High-Resolution Magic Angle Spinning and Genomic Analysis.
    Righi V; García-Martín ML; Mucci A; Schenetti L; Tugnoli V; Lopez-Larrubia P; Cerdán S
    J Proteome Res; 2018 Sep; 17(9):2953-2962. PubMed ID: 30129764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox dependence and compartmentation of [13C]pyruvate in the brain of deuterated rats bearing implanted C6 gliomas.
    Rodrigues TB; López-Larrubia P; Cerdán S
    J Neurochem; 2009 May; 109 Suppl 1():237-45. PubMed ID: 19393033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinecrotic glioma proliferation and metabolic profile within an intracerebral tumor xenograft.
    Gorin F; Harley W; Schnier J; Lyeth B; Jue T
    Acta Neuropathol; 2004 Mar; 107(3):235-44. PubMed ID: 14712400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed metabolic reprogramming as a measure of cancer treatment efficacy in rat C6 glioma model.
    Datta K; Lauritzen MH; Merchant M; Jang T; Liu SC; Hurd R; Recht L; Spielman DM
    PLoS One; 2019; 14(12):e0225313. PubMed ID: 31830049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic patterns in malignant gliomas.
    Meixensberger J; Herting B; Roggendorf W; Reichmann H
    J Neurooncol; 1995; 24(2):153-61. PubMed ID: 7562002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of imaging pentose cycle glucose metabolism in gliomas with PET: studies in rat brain tumor models.
    Spence AM; Graham MM; Muzi M; Freeman SD; Link JM; Grierson JR; O'Sullivan F; Stein D; Abbott GL; Krohn KA
    J Nucl Med; 1997 Apr; 38(4):617-24. PubMed ID: 9098213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cellular energetic metabolism of cerebral tissue: metabolic characteristics of glial tumours].
    La Schiazza R; Lamari F; Foglietti MJ; Hainque B; Bernard M; Beaudeux JL
    Ann Biol Clin (Paris); 2008; 66(2):131-41. PubMed ID: 18390423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 6-aminonicotinamide on metabolism of astrocytes and C6-glioma cells.
    Haghighat N; McCandless DW
    Metab Brain Dis; 1997 Mar; 12(1):29-45. PubMed ID: 9101536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain.
    Morland C; Henjum S; Iversen EG; Skrede KK; Hassel B
    Neurochem Int; 2007 Apr; 50(5):703-9. PubMed ID: 17316901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial profiles of markers of glycolysis, mitochondria, and proton pumps in a rat glioma suggest coordinated programming for proliferation.
    Grillon E; Farion R; Reuveni M; Glidle A; Rémy C; Coles JA
    BMC Res Notes; 2015 Jun; 8():207. PubMed ID: 26032618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the deoxyglucose and glucose phosphorylation ratio and the lumped constant in rat brain and a transplantable rat glioma.
    Kapoor R; Spence AM; Muzi M; Graham MM; Abbott GL; Krohn KA
    J Neurochem; 1989 Jul; 53(1):37-44. PubMed ID: 2723662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.
    Board M; Humm S; Newsholme EA
    Biochem J; 1990 Jan; 265(2):503-9. PubMed ID: 2302181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the pentose phosphate pathway in human astrocytes and gliomas.
    Loreck DJ; Galarraga J; Van der Feen J; Phang JM; Smith BH; Cummins CJ
    Metab Brain Dis; 1987 Mar; 2(1):31-46. PubMed ID: 3505333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes related to energy metabolism in human gliomas.
    Marzatico F; Curti D; Dagani F; Silvani V; Gaetani P; Butti G; Knerich R
    J Neurosurg Sci; 1986; 30(3):129-32. PubMed ID: 2946816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.