These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 1360933)

  • 1. Comparative genome mapping of Sorghum and maize.
    Whitkus R; Doebley J; Lee M
    Genetics; 1992 Dec; 132(4):1119-30. PubMed ID: 1360933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes.
    Hulbert SH; Richter TE; Axtell JD; Bennetzen JL
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4251-5. PubMed ID: 1971947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genetic and QTL mapping in sorghum and maize.
    Lee M
    Symp Soc Exp Biol; 1996; 50():31-8. PubMed ID: 9039432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative linkage maps of the rice and maize genomes.
    Ahn S; Tanksley SD
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):7980-4. PubMed ID: 8103599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.
    Xu JH; Messing J
    Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids.
    Wilson WA; Harrington SE; Woodman WL; Lee M; Sorrells ME; McCouch SR
    Genetics; 1999 Sep; 153(1):453-73. PubMed ID: 10471726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and evolution of the genomes ofsorghum bicolor andZea mays.
    Berhan AM; Hulbert SH; Butler LG; Bennetzen JL
    Theor Appl Genet; 1993 Jun; 86(5):598-604. PubMed ID: 24193709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion.
    Amarillo FI; Bass HW
    Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane.
    Aitken KS; McNeil MD; Berkman PJ; Hermann S; Kilian A; Bundock PC; Li J
    BMC Plant Biol; 2014 Jul; 14():190. PubMed ID: 25059596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an RFLP map in sorghum and comparative mapping in maize.
    Pereira MG; Lee M; Bramel-Cox P; Woodman W; Doebley J; Whitkus R
    Genome; 1994 Apr; 37(2):236-43. PubMed ID: 18470074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homoeologous relationships of rice, wheat and maize chromosomes.
    Ahn S; Anderson JA; Sorrells ME; Tanksley SD
    Mol Gen Genet; 1993 Dec; 241(5-6):483-90. PubMed ID: 7903411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones.
    Koumbaris GL; Bass HW
    Plant J; 2003 Sep; 35(5):647-59. PubMed ID: 12940957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of sorghum bicolor.
    Hamblin MT; Mitchell SE; White GM; Gallego J; Kukatla R; Wing RA; Paterson AH; Kresovich S
    Genetics; 2004 May; 167(1):471-83. PubMed ID: 15166170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage group alignment of sorghum RFLP maps using a RIL mapping population.
    Subudhi PK; Nguyen HT
    Genome; 2000 Apr; 43(2):240-9. PubMed ID: 10791811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs.
    Zwick MS; Islam-Faridi MN; Czeschin DG; Wing RA; Hart GE; Stelly DM; Price HJ
    Genetics; 1998 Apr; 148(4):1983-92. PubMed ID: 9560411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes.
    Ilic K; SanMiguel PJ; Bennetzen JL
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12265-70. PubMed ID: 14530400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selection and use of sorghum (Sorghum propinquum) bacterial artificial chromosomes as cytogenetic FISH probes for maize (Zea mays L.).
    Figueroa DM; Davis JD; Strobel C; Conejo MS; Beckham KD; Ring BC; Bass HW
    J Biomed Biotechnol; 2011; 2011():386862. PubMed ID: 21234422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments.
    Chittenden LM; Schertz KF; Lin YR; Wing RA; Paterson AH
    Theor Appl Genet; 1994 Mar; 87(8):925-33. PubMed ID: 24190526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.
    Dufour P; Grivet L; D'Hont A; Deu M; Trouche G; Glaszmann JC; Hamon P
    Theor Appl Genet; 1996 Jun; 92(8):1024-30. PubMed ID: 24166631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.