These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 1361065)
1. Coloured noise or low-dimensional chaos? Stone L Proc Biol Sci; 1992 Oct; 250(1327):77-81. PubMed ID: 1361065 [TBL] [Abstract][Full Text] [Related]
2. Distinguishing error from chaos in ecological time series. Sugihara G; Grenfell B; May RM Philos Trans R Soc Lond B Biol Sci; 1990 Nov; 330(1257):235-51. PubMed ID: 1981621 [TBL] [Abstract][Full Text] [Related]
4. The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models. Tidd CW; Olsen LF; Schaffer WM Proc Biol Sci; 1993 Dec; 254(1341):257-73. PubMed ID: 8108458 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Sugihara G; May RM Nature; 1990 Apr; 344(6268):734-41. PubMed ID: 2330029 [TBL] [Abstract][Full Text] [Related]
6. Detecting chaos in a noisy time series. Wilson HB; Rand DA Proc Biol Sci; 1993 Sep; 253(1338):239-44. PubMed ID: 8234362 [TBL] [Abstract][Full Text] [Related]
7. Nearly one dimensional dynamics in an epidemic. Schaffer WM; Kot M J Theor Biol; 1985 Jan; 112(2):403-27. PubMed ID: 3982045 [TBL] [Abstract][Full Text] [Related]
8. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Rand DA; Wilson HB Proc Biol Sci; 1991 Nov; 246(1316):179-84. PubMed ID: 1685243 [TBL] [Abstract][Full Text] [Related]
9. Exciting chaos with noise: unexpected dynamics in epidemic outbreaks. Billings L; Schwartz IB J Math Biol; 2002 Jan; 44(1):31-48. PubMed ID: 11942524 [TBL] [Abstract][Full Text] [Related]
10. Space, persistence and dynamics of measles epidemics. Bolker B; Grenfell B Philos Trans R Soc Lond B Biol Sci; 1995 May; 348(1325):309-20. PubMed ID: 8577828 [TBL] [Abstract][Full Text] [Related]
11. Binocular rivalry is not chaotic. Lehky SR Proc Biol Sci; 1995 Jan; 259(1354):71-6. PubMed ID: 7700878 [TBL] [Abstract][Full Text] [Related]
12. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Gao JB; Hu J; Tung WW; Cao YH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136 [TBL] [Abstract][Full Text] [Related]
13. Chaos, population biology, and epidemiology: some research implications. Philippe P Hum Biol; 1993 Aug; 65(4):525-46. PubMed ID: 8406405 [TBL] [Abstract][Full Text] [Related]
14. Measles outbreak--New York City, 1990-1991. Centers for Disease Control (CDC) MMWR Morb Mortal Wkly Rep; 1991 May; 40(18):305-6. PubMed ID: 1902282 [TBL] [Abstract][Full Text] [Related]
15. A scaling analysis of measles epidemics in a small population. Rhodes CJ; Anderson RM Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320 [TBL] [Abstract][Full Text] [Related]
16. Time Series Analysis of the Lecca P; Mura I; Re A; Barker GC; Ihekwaba AE Front Microbiol; 2016; 7():1760. PubMed ID: 27872618 [TBL] [Abstract][Full Text] [Related]
17. An improved surrogate method for detecting the presence of chaos in gait. Miller DJ; Stergiou N; Kurz MJ J Biomech; 2006; 39(15):2873-6. PubMed ID: 16325825 [TBL] [Abstract][Full Text] [Related]
18. On the dynamics of ocean ambient noise: Two decades later. Siddagangaiah S; Li Y; Guo X; Yang K Chaos; 2015 Oct; 25(10):103117. PubMed ID: 26520083 [TBL] [Abstract][Full Text] [Related]
19. Measles in New York City. Friedman S JAMA; 1991 Sep; 266(9):1220. PubMed ID: 1870245 [No Abstract] [Full Text] [Related]
20. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Olsen LF; Schaffer WM Science; 1990 Aug; 249(4968):499-504. PubMed ID: 2382131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]