These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 136158)

  • 41. Structural features of the surface of the vesicles of FSR--lack of functional role in Ca 2+ uptake and ATPase activity.
    Ikemoto N; Sreter FA; Gergely J
    Arch Biochem Biophys; 1971 Dec; 147(2):571-82. PubMed ID: 4257599
    [No Abstract]   [Full Text] [Related]  

  • 42. Characterization of sarcolemma and sarcoplasmic reticulum isolated from skeletal muscle of the freeze tolerant wood frog, Rana sylvatica: the beta(2)-adrenergic receptor and calcium transport systems in control, frozen and thawed states.
    Hemmings SJ; Storey KB
    Cell Biochem Funct; 2001 Jun; 19(2):143-52. PubMed ID: 11335939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of anti-ATPase antibodies upon the Ca++ transport of sarcoplasmic reticulum.
    Martonosi A; Fortier F
    Biochem Biophys Res Commun; 1974 Sep; 60(1):382-9. PubMed ID: 4278601
    [No Abstract]   [Full Text] [Related]  

  • 44. Sarcoplasmic reticulum vesicles from trembler mice: a comparison with material obtained from normal animals.
    Avéret N; Brèthes D; Chevallier J
    Neurosci Lett; 1980 May; 17(3):259-64. PubMed ID: 6221206
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein components of sarcoplasmic reticulum membranes from different animal species.
    Louis CF; Irving I
    Biochim Biophys Acta; 1974 Sep; 365(1):193-202. PubMed ID: 4278238
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum.
    Mermier P; Hasselbach W
    Eur J Biochem; 1976 Oct; 69(1):79-86. PubMed ID: 136346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 48. Sarcoplasmic reticulum from barnacle muscle; composition and calcium uptake properties.
    García AM; Lennon AM; Hidalgo C
    FEBS Lett; 1975 Oct; 58(1):344-8. PubMed ID: 131703
    [No Abstract]   [Full Text] [Related]  

  • 49. ATP-ADP exchange reaction by fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y; Kurebayashi N
    J Muscle Res Cell Motil; 1982 Mar; 3(1):39-56. PubMed ID: 6804490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 51. The biphasic Ca2+-uptake by the fragmented sarcoplasmic reticulum.
    Mermier P; Hasselbach W
    Z Naturforsch C Biosci; 1975; 30(5):593-9. PubMed ID: 56096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium uptake, calcium release and adenosinetriphosphatase activity in sarcoplasmic reticulum fragments deposited on millipore filters.
    Alonso GL; Arrigó DM; Terradas SE; Nikonov JM; Nespral D; Palomba SE
    Biochim Biophys Acta; 1977 Jul; 468(1):31-50. PubMed ID: 141943
    [No Abstract]   [Full Text] [Related]  

  • 53. Alteration of sarcoplasmic reticulum after denervation of chicken pectoralis muscle.
    Tate CA; Bick RJ; Myers TD; Pitts BJ; Van Winkle WB; Entman ML
    Biochem J; 1983 Feb; 210(2):339-44. PubMed ID: 6222730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of thyrotoxicosis on sarcoplasmic reticulum in rat skeletal muscle.
    Kim DH; Witzmann FA; Fitts RH
    Am J Physiol; 1982 Sep; 243(3):C151-5. PubMed ID: 7114246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium accumulation by the sarcoplasmic reticulum in two populations of chemically skinned human muscle fibers. Effects of calcium and cyclic AMP.
    Salviati G; Sorenson MM; Eastwood AB
    J Gen Physiol; 1982 Apr; 79(4):603-32. PubMed ID: 6279758
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of two types of sarcoplasmic reticulum vesicles.
    Meissner G
    Biochim Biophys Acta; 1975 Apr; 389(1):51-68. PubMed ID: 124589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of disuse on sarcoplasmic reticulum in fast and slow skeletal muscle.
    Kim DH; Witzmann FA; Fitts RH
    Am J Physiol; 1982 Sep; 243(3):C156-60. PubMed ID: 6214192
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyclic AMP modulation of calcium accumulation by sarcoplasmic reticulum from fast skeletal muscle.
    Bornet EP; Entman ML; Van Winkle WB; Schwartz A; Lehotay DC; Levey GS
    Biochim Biophys Acta; 1977 Jul; 468(2):188-93. PubMed ID: 195607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Myofibrillar-protein isoforms and sarcoplasmic-reticulum Ca2+-transport activity of single human muscle fibres.
    Salviati G; Betto R; Danieli Betto D; Zeviani M
    Biochem J; 1984 Nov; 224(1):215-25. PubMed ID: 6508759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca-releasing action of beta, gamma-methylene adenosine triphosphate on fragmented sarcoplasmic reticulum.
    Ogawa Y; Ebashi S
    J Biochem; 1976 Nov; 80(5):1149-57. PubMed ID: 1002681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.