BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1361694)

  • 1. Glutamate transmission is involved in the mechanisms of neuronal degeneration produced by intrahippocampal tetanus toxin in rats.
    Bagetta G; Nisticò G
    Toxicol Lett; 1992 Dec; 64-65 Spec No():447-53. PubMed ID: 1361694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention by the NMDA receptor antagonist, MK801 of neuronal loss produced by tetanus toxin in the rat hippocampus.
    Bagetta G; Nisticò G; Bowery NG
    Br J Pharmacol; 1990 Dec; 101(4):776-80. PubMed ID: 2150767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrahippocampal tetanus toxin produces generalized convulsions and neurodegeneration in rats: antagonism by NMDA receptor blockers.
    Bowery NG; Bagetta G; Nisticó G; Britton P; Whitton P
    Epilepsy Res Suppl; 1992; 9():249-56. PubMed ID: 1363043
    [No Abstract]   [Full Text] [Related]  

  • 4. Hippocampal damage produced by tetanus toxin in rats can be prevented by lesioning CA1 pyramidal cell excitatory afferents.
    Bagetta G; Nisticó G; Bowery NG
    Neurosci Lett; 1991 Feb; 123(1):32-6. PubMed ID: 2062452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of the neuroprotective properties of competitive and uncompetitive N-methyl-D-aspartate receptor antagonists in vivo: implications for the process of excitotoxic degeneration and its therapy.
    Massieu L; Thedinga KH; McVey M; Fagg GE
    Neuroscience; 1993 Aug; 55(4):883-92. PubMed ID: 7694181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of a glutamergic mechanism in gamma-dendrotoxin-induced hippocampal neuronal cell loss in the rat.
    Bagetta G; Palma E; Piccirilli S; Del Duca C; Morrone AL; Nappi G; Corasaniti MT; Dolly JO
    Basic Clin Pharmacol Toxicol; 2004 Mar; 94(3):132-8. PubMed ID: 15052999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. gamma-Acetylenic GABA produces axon-sparing neurodegeneration after focal injection into the rat hippocampus.
    McMaster OG; Baran H; Wu HQ; Du F; French ED; Schwarcz R
    Exp Neurol; 1993 Dec; 124(2):184-91. PubMed ID: 8287921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels.
    Peña F; Tapia R
    Neuroscience; 2000; 101(3):547-61. PubMed ID: 11113304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats.
    Bagetta G; Iannone M; Palma E; Nisticò G; Dolly JO
    Neuroscience; 1996 Apr; 71(3):613-24. PubMed ID: 8867035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal damage produced in rats by alpha-dendrotoxin--a selective K+ channel blocker--involves non-NMDA receptor activation.
    Bagetta G; Nair S; Nistico G; Dolly JO
    Neurochem Int; 1994 Jan; 24(1):81-90. PubMed ID: 8130739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex.
    Tomitaka S; Tomitaka M; Tolliver BK; Sharp FR
    Eur J Neurosci; 2000 Apr; 12(4):1420-30. PubMed ID: 10762370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of AMPA/kainate-excitotoxicity in MK801-induced neuronal death in the retrosplenial cortex.
    Bender C; Rassetto M; de Olmos JS; de Olmos S; Lorenzo A
    Neuroscience; 2010 Aug; 169(2):720-32. PubMed ID: 20457221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus.
    Harvey BH; Jonker LP; Brand L; Heenop M; Stein DJ
    Life Sci; 2002 May; 71(1):43-54. PubMed ID: 12020747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive changes in the NMDA receptor complex in rat hippocampus after chronic treatment with CGP 39551.
    Mennini T; Miari A; Presti ML; Rizzi M; Samanin R; Vezzani A
    Eur J Pharmacol; 1994 Dec; 271(1):93-101. PubMed ID: 7698217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetanus toxin as a neurobiological tool to study mechanisms of neuronal cell death in the mammalian brain.
    Bagetta G; Nisticò G
    Pharmacol Ther; 1994; 62(1-2):29-39. PubMed ID: 7991646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy.
    Smith KL; Lee CL; Swann JW
    J Neurophysiol; 1998 Jan; 79(1):106-16. PubMed ID: 9425181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia.
    Nellgård B; Wieloch T
    J Cereb Blood Flow Metab; 1992 Jan; 12(1):2-11. PubMed ID: 1345757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methamphetamine exposure antagonizes N-methyl-D-aspartate receptor-mediated neurotoxicity in organotypic hippocampal slice cultures.
    Smith KJ; Self RL; Butler TR; Mullins MM; Ghayoumi L; Holley RC; Littleton JM; Prendergast MA
    Brain Res; 2007 Jul; 1157():74-80. PubMed ID: 17524372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological characterization of "giant" cells in stratum radiatum of the CA3 hippocampal region.
    Savić N; Sciancalepore M
    J Neurophysiol; 2001 May; 85(5):1998-2007. PubMed ID: 11353016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.