These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 13620174)

  • 1. Neutron beam characteristics from the University of California 60 in. Cyclotron.
    TOCHILIN E; KOHLER GD
    Health Phys; 1958 Dec; 1(3):332-9. PubMed ID: 13620174
    [No Abstract]   [Full Text] [Related]  

  • 2. Pre-therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. II. Physical aspects of the fast neutron beam.
    BEWLEY DK
    Br J Radiol; 1963 Feb; 36():81-8. PubMed ID: 13967925
    [No Abstract]   [Full Text] [Related]  

  • 3. Neutron dose rate in the facility at the cyclotron center of Chung Shan Medical University.
    Lee JP; Chen CY
    J Radiat Res; 2008 Mar; 49(2):147-51. PubMed ID: 18303178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. I. The biological and physical advantages and problems of neutron therapy.
    FOWLER JF; MORGAN RL; WOOD CA
    Br J Radiol; 1963 Feb; 36():77-80. PubMed ID: 13958983
    [No Abstract]   [Full Text] [Related]  

  • 5. Pre-therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. VI. The RBE of fast neutrons in producing intestinal and skin injury in rats.
    TURNER BA; FOWLER JF
    Br J Radiol; 1963 Feb; 36():101-6. PubMed ID: 13994880
    [No Abstract]   [Full Text] [Related]  

  • 6. Pre-therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. V. Comparison between the oxygen enhancement ratios for neutrons and x-rays, as observed with Escherichia coli B.
    ALPER T
    Br J Radiol; 1963 Feb; 36():97-101. PubMed ID: 14012267
    [No Abstract]   [Full Text] [Related]  

  • 7. Pre-therapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. VIII. General review.
    FOWLER JF; MORGAN RL
    Br J Radiol; 1963 Feb; 36():115-21. PubMed ID: 13958982
    [No Abstract]   [Full Text] [Related]  

  • 8. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A superconducting cyclotron for neutron radiation therapy.
    Maughan RL; Powers WE; Blosser HG
    Med Phys; 1994 Jun; 21(6):779-85. PubMed ID: 7935214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast neutron dosimetry at the Argonne National Laboratory cyclotron.
    RHODY RB
    Radiat Res; 1956 Nov; 5(5):495-501. PubMed ID: 13379608
    [No Abstract]   [Full Text] [Related]  

  • 14. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.
    Fujibuchi T; Yamaguchi I; Kasahara T; Iimori T; Masuda Y; Kimura K; Watanabe H; Isobe T; Sakae T
    Radiol Phys Technol; 2009 Jul; 2(2):159-65. PubMed ID: 20821115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.
    Khorshidi A
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():449-454. PubMed ID: 27524041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment.
    Lisin VA; Bogdanov AV; Golovkov VM; Musabaeva LI; Sukhikh LG; Verigin DA
    Rev Sci Instrum; 2014 Feb; 85(2):02C314. PubMed ID: 24593651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological intercomparisons of neutron beams used for radiotherapy generated by p(+)-->Be in hospital-based cyclotrons.
    Hall EJ; Astor M; Brenner DJ
    Br J Radiol; 1992 Jan; 65(769):66-71. PubMed ID: 1336696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.