These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 136203)

  • 1. Mechanism of maleic acid-induced glucosuria in dog kidney.
    Silverman M; Huang L
    Am J Physiol; 1976 Oct; 231(4):1024-32. PubMed ID: 136203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of maleic acid nephropathy: investigations using brush border membrane vesicles.
    Silverman M
    Membr Biochem; 1981; 4(1):63-9. PubMed ID: 7219195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney.
    Silverman M
    Am J Physiol; 1977 May; 232(5):F455-60. PubMed ID: 871167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
    Silverman M; Black J
    Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Deoxy-D-glucose transport in dog kidney.
    Silverman M; Turner RJ
    Am J Physiol; 1982 Jun; 242(6):F711-20. PubMed ID: 7091323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropuncture studies of glucose transport in the dog: mechanism of renal glycosuria.
    Wen SF
    Am J Physiol; 1976 Aug; 231(2):468-75. PubMed ID: 961899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis.
    Bank N; Aynedjian HS; Mutz BF
    Am J Physiol; 1986 Mar; 250(3 Pt 2):F476-82. PubMed ID: 3953825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of phlorizin on luminal and antiluminal membranes of proximal cells of kidney.
    Horsburgh T; Cannon JK; Pitts RF
    Am J Physiol; 1978 Jun; 234(6):F485-9. PubMed ID: 665775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid.
    Carone FA; Nakamura S; Goldman B
    Lab Invest; 1985 Jun; 52(6):605-10. PubMed ID: 3925238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cisplatin on renal function in rabbits: mechanism of reduced glucose reabsorption.
    Kim YK; Byun HS; Kim YH; Woo JS; Lee SH
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):19-26. PubMed ID: 7839366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of maleate on membrane physical state of brush border and basolateral membranes of the dog kidney.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Life Sci; 1982 Mar; 30(13):1107-11. PubMed ID: 6281601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of action of harmaline on renal solute transport.
    Samarzija I; Kinne-Saffran E; Baumann K; Frömter E
    Pflugers Arch; 1977 Mar; 368(1-2):83-8. PubMed ID: 140366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phlorizin effect on the transport of sugars at the antiluminal face of teased flounder tubules.
    Kleinzeller A; Dubyak G; Mullin JF; McAvoy EM
    J Exp Zool; 1977 Mar; 199(3):391-4. PubMed ID: 850118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal sugar transport in the winter flounder. VI. Reabsorption of D-mannose.
    Pritchard JB; Booz GW; Kleinzeller A
    Am J Physiol; 1982 Apr; 242(4):F415-22. PubMed ID: 7065250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brush border disaccharidases in dog kidney and their spatial relationship to glucose transport receptors.
    Silverman M
    J Clin Invest; 1973 Oct; 52(10):2486-94. PubMed ID: 4729044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo determination of cellular uptake in the kidney.
    Silverman M; Trainor C
    Fed Proc; 1982 Dec; 41(14):3054-60. PubMed ID: 6754459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Fanconi syndrome. I. Effect of maleic acid on renal cortical Na-K-ATPase activity and ATP levels.
    Kramer HJ; Gonick HC
    J Lab Clin Med; 1970 Nov; 76(5):799-808. PubMed ID: 4249038
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of maleic acid on renal phosphorus transport: role of dietary phosphorus.
    Guntupalli J; Delaney V; Weinman EJ; Lyle D; Allon M; Bourke E
    Am J Physiol; 1991 Aug; 261(2 Pt 2):F227-37. PubMed ID: 1877648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of the ring oxygen in sugar interaction with transporters at renal tubular surfaces.
    Silverman M
    Biochim Biophys Acta; 1980 Aug; 600(2):502-12. PubMed ID: 7407125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin stimulates Pi transport in brush border vesicles from proximal tubular segments.
    Hammerman MR; Rogers S; Hansen VA; Gavin JR
    Am J Physiol; 1984 Nov; 247(5 Pt 1):E616-24. PubMed ID: 6388354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.