These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 1362441)

  • 1. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.
    Cazalets JR; Sqalli-Houssaini Y; Clarac F
    J Physiol; 1992 Sep; 455():187-204. PubMed ID: 1362441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat.
    Douglas JR; Noga BR; Dai X; Jordan LM
    J Neurosci; 1993 Mar; 13(3):990-1000. PubMed ID: 8095068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B; Morin D; Viala D
    Eur J Neurosci; 2001 Nov; 14(10):1727-38. PubMed ID: 11860467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Methyl-D-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord.
    Brodin L; Grillner S; Rovainen CM
    Brain Res; 1985 Jan; 325(1-2):302-6. PubMed ID: 2858251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity.
    Bracci E; Beato M; Nistri A
    J Neurophysiol; 1998 May; 79(5):2643-52. PubMed ID: 9582235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. II. The effects of amino acid uptake inhibitors.
    Brodin L; Grillner S
    Brain Res; 1985 Dec; 360(1-2):149-58. PubMed ID: 2866823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of locomotion in spinal tadpoles by excitatory amino acids and their agonists.
    Harrison PH
    J Exp Zool; 1990 Apr; 254(1):13-7. PubMed ID: 1971849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of serotonin on fictive locomotion coordinated by a neural network deprived of NMDA receptor-mediated cellular properties.
    Schotland JL; Grillner S
    Exp Brain Res; 1993; 93(3):391-8. PubMed ID: 8100198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst.
    Tu Y; Budelmann BU
    Brain Res; 1994 Apr; 642(1-2):47-58. PubMed ID: 7913392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uneven distribution of excitatory amino acid receptors on ventral horn neurones of newborn rat spinal cord.
    Onodera K; Takeuchi A
    J Physiol; 1991 Aug; 439():257-76. PubMed ID: 1680187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat.
    Greer JJ; Smith JC; Feldman JL
    J Physiol; 1991 Jun; 437():727-49. PubMed ID: 1653855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of serotonin on the glutamate-induced excitations of secondary vestibular neurons in the rat.
    Li Volsi G; Licata F; Fretto G; Mauro MD; Santangelo F
    Exp Neurol; 2001 Dec; 172(2):446-59. PubMed ID: 11716569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory properties of the central pattern generator for locomotion in neonatal rats.
    Sqalli-Houssaini Y; Cazalets JR; Clarac F
    J Neurophysiol; 1993 Aug; 70(2):803-13. PubMed ID: 8410173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization.
    Pittaluga A; Raiteri M
    J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metabotropic glutamate receptor activity on rhythmic discharges of the neonatal rat spinal cord in vitro.
    Taccola G; Marchetti C; Nistri A
    Exp Brain Res; 2003 Dec; 153(3):388-93. PubMed ID: 14523604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.