These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 13628723)

  • 1. Enzymic degradation of deoxyribose derivatives for determination of isotope distribution.
    WRIGHT EM; SABLE HZ
    Biochim Biophys Acta; 1959 Mar; 32(1):124-32. PubMed ID: 13628723
    [No Abstract]   [Full Text] [Related]  

  • 2. Degradation of deoxyribose by E. coli; studies with cell-free extract and isolation of 2-deoxy-D-ribose 5-phosphate.
    JONSEN J; LALAND S; STRAND A
    Biochim Biophys Acta; 1959 Mar; 32(1):117-23. PubMed ID: 13628722
    [No Abstract]   [Full Text] [Related]  

  • 3. BIOSYNTHESIS OF RIBOSE AND DEOXYRIBOSE IN PSEUDOMONAS SACCHAROPHILA.
    FOSSITT DD; BERNSTEIN IA
    J Bacteriol; 1963 Dec; 86(6):1326-31. PubMed ID: 14086109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxyribose-phosphate and acetoin syntheses by Bacillus cereus.
    HOWELLS JD; LINDSTROM ES
    J Bacteriol; 1958 Mar; 75(3):305-9. PubMed ID: 13513601
    [No Abstract]   [Full Text] [Related]  

  • 5. An apparent lack of stereospecificity in the reaction catalysed by deoxyribose 5-phosphate aldolase due to methyl-group rotation and enolization before product release.
    Corina DL; Wilton DC
    Biochem J; 1976 Sep; 157(3):573-6. PubMed ID: 791268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial degradation of deoxyribose-C 14.
    BERNSTEIN IA; FOSSITT D; SWEET D
    J Biol Chem; 1958 Nov; 233(5):1199-202. PubMed ID: 13598761
    [No Abstract]   [Full Text] [Related]  

  • 7. Labeling of glucose, ribose, and deoxyribose by 1- and 2-C14-glycine in regenerating rat liver.
    SHREEVE WW
    J Biol Chem; 1959 Feb; 234(2):246-9. PubMed ID: 13630887
    [No Abstract]   [Full Text] [Related]  

  • 8. On the origin of deoxyribose in Escherichia coli and T6r + bacteriophage.
    LANNING MC; COHEN SS
    J Biol Chem; 1955 Sep; 216(1):413-23. PubMed ID: 13252041
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of deoxyribose 5-phosphate in mammalian tissues.
    ALLENDE C; RACKER E
    Biochim Biophys Acta; 1963 May; 72():10-4. PubMed ID: 14012148
    [No Abstract]   [Full Text] [Related]  

  • 10. A quantitative isotope method for regulation studies of aromatic amino acid synthesis under growth conditions.
    Thauer RK; Jungermann K; Decker K
    Eur J Biochem; 1967 Jun; 1(4):482-6. PubMed ID: 6061966
    [No Abstract]   [Full Text] [Related]  

  • 11. The synthesis of deoxyribose by the chick embryo.
    REICHARD P
    Biochim Biophys Acta; 1958 Feb; 27(2):434-5. PubMed ID: 13522758
    [No Abstract]   [Full Text] [Related]  

  • 12. The metabolism of ribose 5-phosphate by mammalian tissues.
    VILLAVICENCIO M; ROSALES F; GUERRA R
    Biochim Biophys Acta; 1961 Nov; 53():495-508. PubMed ID: 13926029
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of pentose in Escherichia coli. Synthesis of deoxyribose in cells infected with bacteriophage.
    WRIGHT EM; SABLE HZ; BAILEY JL
    J Bacteriol; 1961 Jun; 81(6):845-51. PubMed ID: 13786776
    [No Abstract]   [Full Text] [Related]  

  • 14. The oxidation of ribose 5-phosphate by ferricyanide in the presence of catalase preparations.
    MARGOLIASH E; NOVOGRODSKY A
    Biochim Biophys Acta; 1959 Sep; 35():130-40. PubMed ID: 14421038
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of ribose metabolism in Escherichia coli. 3. Regulation of ribose utilization in vivo.
    David J; Wiesmeyer H
    Biochim Biophys Acta; 1970 Apr; 208(1):68-76. PubMed ID: 4909664
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphate esters in human erythrocytes. VII. Further evidence for ribose 1,5-diphosphate as a natural metabolite.
    Vanderheiden BS
    Biochim Biophys Acta; 1970 Aug; 215(2):242-8. PubMed ID: 5503385
    [No Abstract]   [Full Text] [Related]  

  • 17. [The distribution of pentoses and of ribose-5-phosphate in the uterus].
    PASETTO N; POMINI P
    Boll Soc Ital Biol Sper; 1957 Jul; 33(7):1072-3. PubMed ID: 13510430
    [No Abstract]   [Full Text] [Related]  

  • 18. Radiation-induced degradation of the sugar in model compounds and in DNA.
    Von Sonntag C; Schulte-Frohlinde D
    Mol Biol Biochem Biophys; 1978; 27():204-26. PubMed ID: 651862
    [No Abstract]   [Full Text] [Related]  

  • 19. Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate.
    McElwain MC; Williams MV; Pollack JD
    J Bacteriol; 1988 Feb; 170(2):564-7. PubMed ID: 3123458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of deoxyribose 5-phosphate and ribose 5-phosphate by anion-exchange chromatography.
    Fortier NL; Silva J; Lionetti FJ
    Anal Biochem; 1968 Dec; 26(3):488-90. PubMed ID: 5716204
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.