These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 1363193)

  • 21. Improvement of ischemia/reperfusion-induced contractile dysfunction of perfused hearts by class Ic antiarrhythmic agents.
    Liu JX; Tanonaka K; Ohtsuka Y; Sakai Y; Takeo S
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1247-54. PubMed ID: 8371134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective action of YM-12617, an alpha 1-adrenoceptor antagonist, on the hypoxic and reoxygenated myocardium.
    Tanonaka K; Matsumoto M; Miyake K; Minematsu R; Takeo S
    Eur J Pharmacol; 1989 Jun; 165(1):97-106. PubMed ID: 2569982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation of hypoxia-induced calcium gain and rise in resting tension in isolated rat hearts.
    Nayler WG; Elz JS; Buckley DJ
    Am J Physiol; 1988 Apr; 254(4 Pt 2):H678-85. PubMed ID: 3354696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Function and bioenergetics in isolated perfused trained rat hearts.
    Spencer RG; Buttrick PM; Ingwall JS
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H409-17. PubMed ID: 9038963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mexiletine and lidocaine reduce post-ischemic functional and biochemical dysfunction of perfused hearts.
    Kamiyama T; Tanonaka K; Harada H; Nakai K; Takeo S
    Eur J Pharmacol; 1995 Jan; 272(2-3):151-8. PubMed ID: 7713159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue.
    Kehrer JP; Park Y; Sies H
    J Appl Physiol (1985); 1988 Oct; 65(4):1855-60. PubMed ID: 3182545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial effects of quinidine on post-ischemic contractile failure of isolated rat hearts.
    Liu JX; Tanonaka K; Sanbe A; Yamamoto K; Takeo S
    J Mol Cell Cardiol; 1993 Oct; 25(10):1249-63. PubMed ID: 8263956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atenolol depresses post-ischaemic recovery in the isolated rat heart.
    Allibardi S; Merati G; Chierchia S; Samaja M
    Pharmacol Res; 1999 Jun; 39(6):431-5. PubMed ID: 10373241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diltiazem and verapamil reduce the loss of adenine nucleotide metabolites from hypoxic hearts.
    Takeo S; Tanonaka K; Tazuma Y; Fukao N; Yoshikawa C; Fukumoto T; Tanaka T
    J Mol Cell Cardiol; 1988 May; 20(5):443-56. PubMed ID: 3210252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in cyclic nucleotide levels and contractile force in the isolated hypoxic rat heart during perfusion with glucagon.
    Busuttil RW; Paddock RJ; Fisher JW; George WJ
    Circ Res; 1976 Mar; 38(3):162-7. PubMed ID: 174833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beneficial effects of angiotensin I converting enzyme inhibitor on post-ischemic contractile function of perfused rat heart.
    Tanonaka K; Kamiyama T; Takezono A; Sakai K; Takeo S
    J Mol Cell Cardiol; 1996 Aug; 28(8):1659-70. PubMed ID: 8877776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creatine phosphate and protection against reperfusion-induced arrhythmias in the rat heart.
    Hearse DJ; Tanaka K; Crome R; Manning AS
    Eur J Pharmacol; 1986 Nov; 131(1):21-30. PubMed ID: 3816946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preconditioning and post-ischaemic contractile dysfunction: the role of impaired oxygen delivery vs extracellular metabolite accumulation.
    Zhai X; Lawson CS; Cave AC; Hearse DJ
    J Mol Cell Cardiol; 1993 Jul; 25(7):847-57. PubMed ID: 8230245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of a novel cyclohexane dicarboximide derivative, ST-6, on hypoxia/reoxygenation injury in perfused rat heart.
    Takeo S; Tanonaka K; Kajiwara H; Miyake K; Antoku F; Mori H
    Biol Pharm Bull; 2000 Jun; 23(6):712-6. PubMed ID: 10864021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of metabolic acidosis on cardiac mechanical performance during severe acute hypoxia and reoxygenation is small and transient.
    Wright G; Kingston MA; Ross IS
    Cardiovasc Res; 1995 May; 29(5):611-5. PubMed ID: 7606747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat hearts.
    Weiss RG; Lakatta EG; Gerstenblith G
    Circ Res; 1990 Apr; 66(4):1012-22. PubMed ID: 2317884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia.
    Takeo S; Sakanashi M
    J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen-induced enzyme release after irreversible myocardial injury. Effects of cyanide in perfused rat hearts.
    Ganote CE; Worstell J; Kaltenbach JP
    Am J Pathol; 1976 Aug; 84(2):327-50. PubMed ID: 941982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.