These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1363551)

  • 1. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes.
    Rivett AJ; Levine RL
    Arch Biochem Biophys; 1990 Apr; 278(1):26-34. PubMed ID: 1969723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Bacillus subtilis glutamine synthetase by limited proteolysis.
    Kimura K; Sugano S; Funae A; Nakano Y
    J Biochem; 1991 Oct; 110(4):526-31. PubMed ID: 1685734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-sensitive mutant of Bacillus subtilis glutamine synthetase obtained by random mutation.
    Nakano Y; Kimura K
    J Biochem; 1990 Jul; 108(1):116-21. PubMed ID: 1977743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the Bacillus subtilis glutamine synthetase gene in Escherichia coli.
    Gardner AL; Aronson AI
    J Bacteriol; 1984 Jun; 158(3):967-71. PubMed ID: 6144669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme.
    Dean DR; Hoch JA; Aronson AI
    J Bacteriol; 1977 Sep; 131(3):981-7. PubMed ID: 19424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine.
    Deuel TF; Prusiner S
    J Biol Chem; 1974 Jan; 249(1):257-64. PubMed ID: 4149044
    [No Abstract]   [Full Text] [Related]  

  • 9. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.
    Hauf K; Kayumov A; Gloge F; Forchhammer K
    J Biol Chem; 2016 Feb; 291(7):3483-95. PubMed ID: 26635369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamine synthetase subunit mixing and regulation in Bacillus subtilis partial diploids.
    Gardner A; Odebralski J; Zahler S; Korman RZ; Aronson AI
    J Bacteriol; 1982 Jan; 149(1):378-80. PubMed ID: 6119308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of Bacillus subtilis glutamine synthetase. Further purification, sulfhydryl groups, and the NH2-terminal amino acid sequence.
    Hsu R; Singer SJ; Keim P; Deuel TF; Heinrikson RL
    Arch Biochem Biophys; 1977 Jan; 178(2):644-51. PubMed ID: 13737
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis.
    Strauch MA; Zalkin H; Aronson AI
    J Bacteriol; 1988 Feb; 170(2):916-20. PubMed ID: 2892827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA.
    Fisher SH; Brandenburg JL; Wray LV
    Mol Microbiol; 2002 Aug; 45(3):627-35. PubMed ID: 12139611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered regulation of the glnRA operon in a Bacillus subtilis mutant that produces methionine sulfoximine-tolerant glutamine synthetase.
    Schreier HJ; Rostkowski CA; Kellner EM
    J Bacteriol; 1993 Feb; 175(3):892-7. PubMed ID: 8093698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG; Riordan JF
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolysis induced by metal-catalyzed oxidation.
    Levine RL
    Revis Biol Celular; 1989; 21():347-60. PubMed ID: 2576881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system.
    Levine RL
    J Biol Chem; 1983 Oct; 258(19):11828-33. PubMed ID: 6137484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of a repressor for the Bacillus cereus glnRA operon.
    Nakano Y; Kimura K
    J Biochem; 1991 Feb; 109(2):223-8. PubMed ID: 1677938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feedback-resistant mutant of Bacillus subtilis glutamine synthetase with pleiotropic defects in nitrogen-regulated gene expression.
    Wray LV; Fisher SH
    J Biol Chem; 2005 Sep; 280(39):33298-304. PubMed ID: 16055443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.