BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1363554)

  • 1. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation.
    Pillai S; Bikle DD
    J Cell Physiol; 1992 Jun; 151(3):623-9. PubMed ID: 1363554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitors of the intracellular Ca(2+)-ATPase in cultured mouse keratinocytes reveal components of terminal differentiation that are regulated by distinct intracellular Ca2+ compartments.
    Li L; Tucker RW; Hennings H; Yuspa SH
    Cell Growth Differ; 1995 Sep; 6(9):1171-84. PubMed ID: 8519694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,25 dihydroxyvitamin D3 enhances the calcium response of keratinocytes.
    Ratnam AV; Bikle DD; Cho JK
    J Cell Physiol; 1999 Feb; 178(2):188-96. PubMed ID: 10048583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium.
    Pillai S; Bikle DD; Mancianti ML; Cline P; Hincenbergs M
    J Cell Physiol; 1990 May; 143(2):294-302. PubMed ID: 1970572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3.
    Pillai S; Bikle DD
    J Cell Physiol; 1991 Jan; 146(1):94-100. PubMed ID: 1990023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization and quantitation of calcium pools and calcium binding sites in cultured human keratinocytes.
    Pillai S; Menon GK; Bikle DD; Elias PM
    J Cell Physiol; 1993 Jan; 154(1):101-12. PubMed ID: 8419397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thapsigargin raises intracellular free calcium levels in human keratinocytes and inhibits the coordinated expression of differentiation markers.
    Jones KT; Sharpe GR
    Exp Cell Res; 1994 Jan; 210(1):71-6. PubMed ID: 8269999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The erbstatin analogue methyl 2,5-dihydroxycinnamate cross-links proteins and is cytotoxic to normal and neoplastic epithelial cells by a mechanism independent of tyrosine kinase inhibition.
    Stanwell C; Burke TR; Yuspa SH
    Cancer Res; 1995 Nov; 55(21):4950-6. PubMed ID: 7585535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes.
    Reiss M; Lipsey LR; Zhou ZL
    J Cell Physiol; 1991 May; 147(2):281-91. PubMed ID: 1645742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed.
    Manaves V; Qin W; Bauer AL; Rossie S; Kobayashi M; Rane SG
    BMC Dermatol; 2004 Jun; 4():7. PubMed ID: 15200683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease of Ca(2+)-ATPase activity in human keratinocytes during calcium-induced differentiation.
    Cho JK; Bikle DD
    J Cell Physiol; 1997 Aug; 172(2):146-54. PubMed ID: 9258336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes.
    Pillai S; Bikle DD
    J Clin Invest; 1992 Jul; 90(1):42-51. PubMed ID: 1321844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni2+ blocks the Ca2+ influx in human keratinocytes following a rise in extracellular Ca2+.
    Jones KT; Sharpe GR
    Exp Cell Res; 1994 Jun; 212(2):409-13. PubMed ID: 7514538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strontium induces murine keratinocyte differentiation in vitro in the presence of serum and calcium.
    Li L; Kruszewski FH; Punnonen K; Tucker RW; Yuspa SH; Hennings H
    J Cell Physiol; 1993 Mar; 154(3):643-53. PubMed ID: 7679679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-mediated regulation of the low density lipoprotein receptor and intracellular cholesterol synthesis in human epidermal keratinocytes.
    Ponec M; Havekes L; Kempenaar J; Lavrijsen S; Wijsman M; Boonstra J; Vermeer BJ
    J Cell Physiol; 1985 Oct; 125(1):98-106. PubMed ID: 2413059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium modulates cornified envelope formation, involucrin content, and transglutaminase activity in cultured human ectocervical epithelial cells.
    Kasturi L; Sizemore N; Eckert RL; Martin K; Rorke EA
    Exp Cell Res; 1993 Mar; 205(1):84-90. PubMed ID: 8095904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations.
    Kruszewski FH; Hennings H; Tucker RW; Yuspa SH
    Cancer Res; 1991 Aug; 51(16):4206-12. PubMed ID: 1907882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes.
    Micallef L; Belaubre F; Pinon A; Jayat-Vignoles C; Delage C; Charveron M; Simon A
    Exp Dermatol; 2009 Feb; 18(2):143-51. PubMed ID: 18637039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.
    Bikle DD; Ratnam A; Mauro T; Harris J; Pillai S
    J Clin Invest; 1996 Feb; 97(4):1085-93. PubMed ID: 8613532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.