These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 1363618)
1. Relationship of protease-resistant protein, scrapie-associated fibrils and tubulofilamentous particles to the agent of spongiform encephalopathies. Narang HK Res Virol; 1992; 143(6):381-6. PubMed ID: 1363618 [TBL] [Abstract][Full Text] [Related]
2. A critical review of the nature of the spongiform encephalopathy agent: protein theory versus virus theory. Narang H Exp Biol Med (Maywood); 2002 Jan; 227(1):4-19. PubMed ID: 11788778 [TBL] [Abstract][Full Text] [Related]
3. The nature of the scrapie agent: the virus theory. Narang H Proc Soc Exp Biol Med; 1996 Jul; 212(3):208-24. PubMed ID: 8677266 [TBL] [Abstract][Full Text] [Related]
4. Scrapie-associated tubulofilamentous particles in human Creutzfeldt-Jakob disease. Narang HK Res Virol; 1992; 143(6):387-95. PubMed ID: 1363619 [TBL] [Abstract][Full Text] [Related]
5. The scrapie fibril protein and its cellular isoform. Hope J; Manson J Curr Top Microbiol Immunol; 1991; 172():57-74. PubMed ID: 1687385 [TBL] [Abstract][Full Text] [Related]
6. Evidence that scrapie-associated tubulofilamentous particles contain a single-stranded DNA. Narang HK Intervirology; 1993; 36(1):1-10. PubMed ID: 7755662 [TBL] [Abstract][Full Text] [Related]
7. Prion encephalopathies of animals and humans. Prusiner SB Dev Biol Stand; 1993; 80():31-44. PubMed ID: 8270114 [TBL] [Abstract][Full Text] [Related]
8. Evidence that DNA is present in abnormal tubulofilamentous structures found in scrapie. Narang HK; Asher DM; Gajdusek DC Proc Natl Acad Sci U S A; 1988 May; 85(10):3575-9. PubMed ID: 3130630 [TBL] [Abstract][Full Text] [Related]
9. Evidence of ssDNA in tubulofilamentous particles: their relationship to scrapie-associated fibrils. Narang HK Intervirology; 1991; 32(3):185-92. PubMed ID: 1674941 [TBL] [Abstract][Full Text] [Related]
10. Evidence for biological and structural diversity among scrapie strains. Kascsak RJ; Rubenstein R; Carp RI Curr Top Microbiol Immunol; 1991; 172():139-52. PubMed ID: 1725770 [No Abstract] [Full Text] [Related]
13. PrP knock-out and PrP transgenic mice in prion research. Weissmann C; Flechsig E Br Med Bull; 2003; 66():43-60. PubMed ID: 14522848 [TBL] [Abstract][Full Text] [Related]
14. Transgenetic investigations of prion diseases of humans and animals. Prusiner SB Philos Trans R Soc Lond B Biol Sci; 1993 Feb; 339(1288):239-54. PubMed ID: 8097053 [TBL] [Abstract][Full Text] [Related]
15. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Kocisko DA; Priola SA; Raymond GJ; Chesebro B; Lansbury PT; Caughey B Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3923-7. PubMed ID: 7732006 [TBL] [Abstract][Full Text] [Related]
16. Molecular biology of prions causing infectious and genetic encephalopathies of humans as well as scrapie of sheep and BSE of cattle. Prusiner SB Dev Biol Stand; 1991; 75():55-74. PubMed ID: 1686599 [TBL] [Abstract][Full Text] [Related]
17. The scrapie enigma: insights from radiation experiments. Alper T Radiat Res; 1993 Sep; 135(3):283-92. PubMed ID: 8104352 [TBL] [Abstract][Full Text] [Related]
18. Molecular pathology of scrapie-associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie. Hope J; Multhaup G; Reekie LJ; Kimberlin RH; Beyreuther K Eur J Biochem; 1988 Mar; 172(2):271-7. PubMed ID: 2894984 [TBL] [Abstract][Full Text] [Related]