BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1363898)

  • 1. X-ray structure of Glu 53 human lysozyme.
    Harata K; Muraki M; Hayashi Y; Jigami Y
    Protein Sci; 1992 Nov; 1(11):1447-53. PubMed ID: 1363898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Arg115 in the catalytic action of human lysozyme. X-ray structure of His115 and Glu115 mutants.
    Harata K; Muraki M; Jigami Y
    J Mol Biol; 1993 Oct; 233(3):524-35. PubMed ID: 8105095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants.
    Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E
    J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme.
    Muraki M; Goda S; Nagahora H; Harata K
    Protein Sci; 1997 Feb; 6(2):473-6. PubMed ID: 9041653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1.
    Widersten M; Björnestedt R; Mannervik B
    Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme.
    Kawamura S; Ohno K; Ohkuma M; Chijiiwa Y; Torikata T
    J Biochem; 2006 Jul; 140(1):75-85. PubMed ID: 16877771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase.
    Martí-Arbona R; Thoden JB; Holden HM; Raushel FM
    Bioorg Chem; 2005 Dec; 33(6):448-58. PubMed ID: 16289685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II.
    Xue Y; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of carbohydrate recognition specificity of human lysozyme revealed by affinity labeling.
    Muraki M; Harata K; Sugita N; Sato K
    Biochemistry; 1996 Oct; 35(42):13562-7. PubMed ID: 8885835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures.
    Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity.
    van Ophem PW; Peisach D; Erickson SD; Soda K; Ringe D; Manning JM
    Biochemistry; 1999 Jan; 38(4):1323-31. PubMed ID: 9930994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of precise positioning of negatively charged carboxylate in the catalytic action of human lysozyme.
    Muraki M; Harata K; Hayashi Y; Machida M; Jigami Y
    Biochim Biophys Acta; 1991 Aug; 1079(2):229-37. PubMed ID: 1911846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction.
    Peterson KL; Galitz DS; Srivastava DK
    Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC
    Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five crucial carboxyl residues of 1,2-alpha-mannosidase from Aspergillus saitoi (A. phoenicis), a food microorganism, are identified by site-directed mutagenesis.
    Fujita A; Yoshida T; Ichishima E
    Biochem Biophys Res Commun; 1997 Sep; 238(3):779-83. PubMed ID: 9325167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.