These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 1363898)
1. X-ray structure of Glu 53 human lysozyme. Harata K; Muraki M; Hayashi Y; Jigami Y Protein Sci; 1992 Nov; 1(11):1447-53. PubMed ID: 1363898 [TBL] [Abstract][Full Text] [Related]
2. Role of Arg115 in the catalytic action of human lysozyme. X-ray structure of His115 and Glu115 mutants. Harata K; Muraki M; Jigami Y J Mol Biol; 1993 Oct; 233(3):524-35. PubMed ID: 8105095 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants. Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199 [TBL] [Abstract][Full Text] [Related]
4. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. Muraki M; Goda S; Nagahora H; Harata K Protein Sci; 1997 Feb; 6(2):473-6. PubMed ID: 9041653 [TBL] [Abstract][Full Text] [Related]
5. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. Widersten M; Björnestedt R; Mannervik B Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473 [TBL] [Abstract][Full Text] [Related]
6. Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. Kawamura S; Ohno K; Ohkuma M; Chijiiwa Y; Torikata T J Biochem; 2006 Jul; 140(1):75-85. PubMed ID: 16877771 [TBL] [Abstract][Full Text] [Related]
7. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284 [TBL] [Abstract][Full Text] [Related]
8. Functional significance of Glu-77 and Tyr-137 within the active site of isoaspartyl dipeptidase. Martí-Arbona R; Thoden JB; Holden HM; Raushel FM Bioorg Chem; 2005 Dec; 33(6):448-58. PubMed ID: 16289685 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Xue Y; Liljas A; Jonsson BH; Lindskog S Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850 [TBL] [Abstract][Full Text] [Related]
10. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750 [TBL] [Abstract][Full Text] [Related]
12. Origin of carbohydrate recognition specificity of human lysozyme revealed by affinity labeling. Muraki M; Harata K; Sugita N; Sato K Biochemistry; 1996 Oct; 35(42):13562-7. PubMed ID: 8885835 [TBL] [Abstract][Full Text] [Related]
13. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128 [TBL] [Abstract][Full Text] [Related]
16. Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity. van Ophem PW; Peisach D; Erickson SD; Soda K; Ringe D; Manning JM Biochemistry; 1999 Jan; 38(4):1323-31. PubMed ID: 9930994 [TBL] [Abstract][Full Text] [Related]
17. The importance of precise positioning of negatively charged carboxylate in the catalytic action of human lysozyme. Muraki M; Harata K; Hayashi Y; Machida M; Jigami Y Biochim Biophys Acta; 1991 Aug; 1079(2):229-37. PubMed ID: 1911846 [TBL] [Abstract][Full Text] [Related]
18. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction. Peterson KL; Galitz DS; Srivastava DK Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241 [TBL] [Abstract][Full Text] [Related]
19. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768 [TBL] [Abstract][Full Text] [Related]
20. Five crucial carboxyl residues of 1,2-alpha-mannosidase from Aspergillus saitoi (A. phoenicis), a food microorganism, are identified by site-directed mutagenesis. Fujita A; Yoshida T; Ichishima E Biochem Biophys Res Commun; 1997 Sep; 238(3):779-83. PubMed ID: 9325167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]